Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cynthia L. Thomas is active.

Publication


Featured researches published by Cynthia L. Thomas.


Oncogene | 2012

SULF2 methylation is prognostic for lung cancer survival and increases sensitivity to topoisomerase-I inhibitors via induction of ISG15

Mathewos Tessema; Christin M. Yingling; Cynthia L. Thomas; Donna M. Klinge; Amanda M. Bernauer; Yushi Liu; Sanja Dacic; Jill M. Siegfried; Suzanne E. Dahlberg; Joan H. Schiller; Steven A. Belinsky

The heparan sulfate 6-O-endosulfatase (SULF2) promotes growth and metastasis of solid tumors. We recently identified that cytosine methylation of the SULF2 promoter is associated with better survival of resected lung adenocarcinoma patients, and now also demonstrates a marginal improvement in survival of advanced non-small cell lung cancer (NSCLC) patients receiving standard chemotherapy (hazard ratio=0.63, P=0.07). Subsequent studies focused on investigating the effect of methylation on SULF2 expression and its genome-wide impact. The genes and pathways modulated by epigenetic inactivation of SULF2 and the effects on sensitivity to chemotherapy were characterized in vitro and in vivo. Silencing SULF2 through small interfering RNA or methylation primarily increased expression of interferon-inducible genes including ISG15, a marker for increased sensitivity to topoisomerase-1 inhibitors such as camptothecin (CPT). NSCLC cell lines with methylated SULF2 (SULF2M) express 60-fold higher ISG15 compared with SULF2 unmethylated (SULF2U) NSCLC cell lines and normal human bronchial epithelial cells. In vitro, SULF2M and high ISG15 (ISG15H)-expressing NSCLC cell lines were 134-fold more sensitive to CPT than SULF2U and low ISG15 (ISG15L)-expressing cell lines. Topotecan, a soluble analog of CPT and FDA-approved anticancer drug, dramatically arrested the growth of SULF2M-ISG15H, but not SULF2U-ISG15L lung tumors in nude mice (P<0.002). Similarly, high ISG15 expression that is comparable to the topotecan (TPT)-sensitive NSCLC cell lines was found in tumors from 25% of NSCLC patients compared with normal lung, indicating a potential to identify and target the most sensitive NSCLC subpopulation for personalized TPT therapy.


PLOS ONE | 2012

Differential Epigenetic Regulation of TOX Subfamily High Mobility Group Box Genes in Lung and Breast Cancers

Mathewos Tessema; Christin M. Yingling; Marcie J. Grimes; Cynthia L. Thomas; Yushi Liu; Shuguang Leng; Nancy E. Joste; Steven A. Belinsky

Aberrant cytosine methylation affects regulation of hundreds of genes during cancer development. In this study, a novel aberrantly hypermethylated CpG island in cancer was discovered within the TOX2 promoter. TOX2 was unmethylated in normal cells but 28% lung (n = 190) and 23% breast (n = 80) tumors were methylated. Expression of two novel TOX2 transcripts identified was significantly reduced in primary lung tumors than distant normal lung (p<0.05). These transcripts were silenced in methylated lung and breast cancer cells and 5-Aza-2-deoxycytidine treatment re-expressed both. Extension of these assays to TOX, TOX3, and TOX4 genes that share similar genomic structure and protein homology with TOX2 revealed distinct methylation profiles by smoking status, histology, and cancer type. TOX was almost exclusively methylated in breast (43%) than lung (5%) cancer, whereas TOX3 was frequently methylated in lung (58%) than breast (30%) tumors. TOX4 was unmethylated in all samples and showed the highest expression in normal lung. Compared to TOX4, expression of TOX, TOX2 and TOX3 in normal lung was 25, 44, and 88% lower, respectively, supporting the premise that reduced promoter activity confers increased susceptibility to methylation during lung carcinogenesis. Genome-wide assays revealed that siRNA-mediated TOX2 knockdown modulated multiple pathways while TOX3 inactivation targeted neuronal development and function. Although these knockdowns did not result in further phenotypic changes of lung cancer cells in vitro, the impact on tissue remodeling, inflammatory response, and cell differentiation pathways suggest a potential role for TOX2 in modulating tumor microenvironment.


American Journal of Respiratory and Critical Care Medicine | 2013

Native American Ancestry Affects the Risk for Gene Methylation in the Lungs of Hispanic Smokers from New Mexico

Shuguang Leng; Yushi Liu; Cynthia L. Thomas; W. James Gauderman; Maria A. Picchi; Shannon Bruse; Xiequn Zhang; Kristina G. Flores; David Van Den Berg; Christine A. Stidley; Frank D. Gilliland; Steven A. Belinsky

RATIONALE Gene promoter methylation detected in sputum predicts lung cancer risk in smokers. Compared with non-Hispanic whites (NHW), Hispanics have a lower age-standardized incidence for lung cancer. OBJECTIVES This study compared the methylation prevalence in sputum of NHWs with Hispanics using the Lovelace Smokers cohort (n = 1998) and evaluated the effect of Native American ancestry (NAA) and diet on biomarkers for lung cancer risk. METHODS Genetic ancestry was estimated using 48 ancestry markers. Diet was assessed by the Harvard University Dietary Assessment questionnaire. Methylation of 12 genes was measured in sputum using methylation-specific polymerase chain reaction. The association between NAA and risk for methylation was assessed using generalized estimating equations. The ethnic difference in the association between pack-years and risk for lung cancer was assessed in the New Mexico lung cancer study. MEASUREMENTS AND MAIN RESULTS Overall Hispanics had a significantly increased risk for methylation across the 12 genes analyzed (odds ratio, 1.18; P = 0.007). However, the risk was reduced by 32% (P = 0.032) in Hispanics with high versus low NAA. In the New Mexico lung cancer study, Hispanic non-small cell lung cancer cases have significantly lower pack-years than NHW counterparts (P = 0.007). Furthermore, compared with NHW smokers, Hispanic smokers had a more rapidly increasing risk for lung cancer as a function of pack-years (P = 0.058). CONCLUSIONS NAA may be an important risk modifier for methylation in Hispanic smokers. Smoking intensity may have a greater impact on risk for lung cancer in Hispanics compared with NHWs.


Environmental Health Perspectives | 2015

Radon Exposure, IL-6 Promoter Variants, and Lung Squamous Cell Carcinoma in Former Uranium Miners

Shuguang Leng; Cynthia L. Thomas; Amanda M. Snider; Maria A. Picchi; Wenshu Chen; Derall Willis; Teara G. Carr; Jacek Krzeminski; Dhimant Desai; Amin Shantu; Yong Lin; Marty R. Jacobson; Steven A. Belinsky

Background: High radon exposure is a risk factor for squamous cell carcinoma, a major lung cancer histology observed in former uranium miners. Radon exposure can cause oxidative stress, leading to pulmonary inflammation. Interleukin-6 (IL-6) is a pro-carcinogenic inflammatory cytokine that plays a pivotal role in lung cancer development. Objectives: We assessed whether single nucleotide polymorphisms (SNPs) in the IL6 promoter are associated with lung cancer in former uranium miners with high occupational exposure to radon gas. Methods: Genetic associations were assessed in a case–control study of former uranium miners (242 cases and 336 controls). A replication study was performed using data from the Gene Environment Association Studies (GENEVA) Genome Wide Association Study (GWAS) of Lung Cancer and Smoking. Functional relevance of the SNPs was characterized using in vitro approaches. Results: We found that rs1800797 was associated with squamous cell carcinoma in miners and with a shorter time between the midpoint of the period of substantial exposure and diagnosis among the cases. Furthermore, rs1800797 was also associated with lung cancer among never smokers in the GENEVA dataset. Functional studies identified that the risk allele was associated with increased basal IL-6 mRNA level and greater promoter activity. Furthermore, fibroblasts with the risk allele showed greater induction of IL-6 secretion by hydrogen peroxide or benzo[a]pyrene diolepoxide treatments. Conclusions: An IL6 promoter variant was associated with lung cancer in uranium miners and never smokers in two external study populations. The associations are strongly supported by the functional relevance that the IL6 promoter SNP affects basal expression and carcinogen-induced IL-6 secretion. Citation: Leng S, Thomas CL, Snider AM, Picchi MA, Chen W, Willis DG, Carr TG, Krzeminski J, Desai D, Shantu A, Lin Y, Jacobson MR, Belinsky SA. 2016. Radon exposure, IL-6 promoter variants, and lung squamous cell carcinoma in former uranium miners. Environ Health Perspect 124:445–451; http://dx.doi.org/10.1289/ehp.1409437


Carcinogenesis | 2013

Genetic variation in SIRT1 affects susceptibility of lung squamous cell carcinomas in former uranium miners from the Colorado plateau

Shuguang Leng; Maria A. Picchi; Yushi Liu; Cynthia L. Thomas; Derall Willis; Amanda M. Bernauer; Teara G. Carr; Padilla T. Mabel; Younghun Han; Christopher I. Amos; Yong Lin; Christine A. Stidley; Frank D. Gilliland; Marty R. Jacobson; Steven A. Belinsky

Epidemiological studies of underground miners suggested that occupational exposure to radon causes lung cancer with squamous cell carcinoma (SCC) as the predominant histological type. However, the genetic determinants for susceptibility of radon-induced SCC in miners are unclear. Double-strand breaks induced by radioactive radon daughters are repaired primarily by non-homologous end joining (NHEJ) that is accompanied by the dynamic changes in surrounding chromatin, including nucleosome repositioning and histone modifications. Thus, a molecular epidemiological study was conducted to assess whether genetic variation in 16 genes involved in NHEJ and related histone modification affected susceptibility for SCC in radon-exposed former miners (267 SCC cases and 383 controls) from the Colorado plateau. A global association between genetic variation in the haplotype block where SIRT1 resides and the risk for SCC in miners (P = 0.003) was identified. Haplotype alleles tagged by the A allele of SIRT1 rs7097008 were associated with increased risk for SCC (odds ratio = 1.69, P = 8.2 × 10(-5)) and greater survival in SCC cases (hazard ratio = 0.79, P = 0.03) in miners. Functional validation of rs7097008 demonstrated that the A allele was associated with reduced gene expression in bronchial epithelial cells and compromised DNA repair capacity in peripheral lymphocytes. Together, these findings substantiate genetic variation in SIRT1 as a risk modifier for developing SCC in miners and suggest that SIRT1 may also play a tumor suppressor role in radon-induced cancer in miners.


Journal of the National Cancer Institute | 2015

15q12 Variants, Sputum Gene Promoter Hypermethylation, and Lung Cancer Risk: A GWAS in Smokers

Shuguang Leng; Yushi Liu; Joel L. Weissfeld; Cynthia L. Thomas; Younghun Han; Maria A. Picchi; Christopher K. Edlund; Randall P. Willink; Autumn Gaither Davis; Kieu Do; Tomoko Nukui; Xiequn Zhang; Elizabeth A. Burki; David Van Den Berg; Marjorie Romkes; W. James Gauderman; Richard E. Crowell; Yohannes Tesfaigzi; Christine A. Stidley; Christopher I. Amos; Jill M. Siegfried; Frank D. Gilliland; Steven A. Belinsky

BACKGROUND Lung cancer is the leading cause of cancer-related mortality worldwide. Detection of promoter hypermethylation of tumor suppressor genes in exfoliated cells from the lung provides an assessment of field cancerization that in turn predicts lung cancer. The identification of genetic determinants for this validated cancer biomarker should provide novel insights into mechanisms underlying epigenetic reprogramming during lung carcinogenesis. METHODS A genome-wide association study using generalized estimating equations and logistic regression models was conducted in two geographically independent smoker cohorts to identify loci affecting the propensity for cancer-related gene methylation that was assessed by a 12-gene panel interrogated in sputum. All statistical tests were two-sided. RESULTS Two single nucleotide polymorphisms (SNPs) at 15q12 (rs73371737 and rs7179575) that drove gene methylation were discovered and replicated with rs73371737 reaching genome-wide significance (P = 3.3×10(-8)). A haplotype carrying risk alleles from the two 15q12 SNPs conferred 57% increased risk for gene methylation (P = 2.5×10(-9)). Rs73371737 reduced GABRB3 expression in lung cells and increased risk for smoking-induced chronic mucous hypersecretion. Furthermore, subjects with variant homozygote of rs73371737 had a two-fold increase in risk for lung cancer (P = .0043). Pathway analysis identified DNA double-strand break repair by homologous recombination (DSBR-HR) as a major pathway affecting susceptibility for gene methylation that was validated by measuring chromatid breaks in lymphocytes challenged by bleomycin. CONCLUSIONS A functional 15q12 variant was identified as a risk factor for gene methylation and lung cancer. The associations could be mediated by GABAergic signaling that drives the smoking-induced mucous cell metaplasia. Our findings also substantiate DSBR-HR as a critical pathway driving epigenetic gene silencing.


Oncotarget | 2017

Gene methylation biomarkers in sputum as a classifier for lung cancer risk

Shuguang Leng; Guodong Wu; Donna M. Klinge; Cynthia L. Thomas; Elia Casas; Maria A. Picchi; Christine A. Stidley; Sandra J. Lee; Seena C. Aisner; Jill M. Siegfried; Suresh S. Ramalingam; Fadlo R. Khuri; Daniel D. Karp; Steven A. Belinsky

CT screening for lung cancer reduces mortality, but will cost Medicare ~2 billion dollars due in part to high false positive rates. Molecular biomarkers could augment current risk stratification used to select smokers for screening. Gene methylation in sputum reflects lung field cancerization that remains in lung cancer patients post-resection. This population was used in conjunction with cancer-free smokers to evaluate classification accuracy of a validated eight-gene methylation panel in sputum for cancer risk. Sputum from resected lung cancer patients (n=487) and smokers from Lovelace (n=1380) and PLuSS (n=718) cohorts was studied for methylation of an 8-gene panel. Area under a receiver operating characteristic curve was calculated to assess the prediction performance in logistic regressions with different sets of variables. The prevalence for methylation of all genes was significantly increased in the ECOG-ACRIN patients compared to cancer-free smokers as evident by elevated odds ratios that ranged from 1.6 to 8.9. The gene methylation panel showed lung cancer prediction accuracy of 82-86% and with addition of clinical variables improved to 87-90%. With sensitivity at 95%, specificity increased from 25% to 54% comparing clinical variables alone to their inclusion with methylation. The addition of methylation biomarkers to clinical variables would reduce false positive screens by ruling out one-third of smokers eligible for CT screening and could increase cancer detection rates through expanding risk assessment criteria.CT screening for lung cancer reduces mortality, but will cost Medicare ∼2 billion dollars due in part to high false positive rates. Molecular biomarkers could augment current risk stratification used to select smokers for screening. Gene methylation in sputum reflects lung field cancerization that remains in lung cancer patients post-resection. This population was used in conjunction with cancer-free smokers to evaluate classification accuracy of a validated eight-gene methylation panel in sputum for cancer risk. Sputum from resected lung cancer patients (n=487) and smokers from Lovelace (n=1380) and PLuSS (n=718) cohorts was studied for methylation of an 8-gene panel. Area under a receiver operating characteristic curve was calculated to assess the prediction performance in logistic regressions with different sets of variables. The prevalence for methylation of all genes was significantly increased in the ECOG-ACRIN patients compared to cancer-free smokers as evident by elevated odds ratios that ranged from 1.6 to 8.9. The gene methylation panel showed lung cancer prediction accuracy of 82–86% and with addition of clinical variables improved to 87–90%. With sensitivity at 95%, specificity increased from 25% to 54% comparing clinical variables alone to their inclusion with methylation. The addition of methylation biomarkers to clinical variables would reduce false positive screens by ruling out one-third of smokers eligible for CT screening and could increase cancer detection rates through expanding risk assessment criteria.


Cancer Research | 2016

TSC2 deficiency unmasks a novel necrosis pathway that is suppressed by the RIP1/RIP3/MLKL signaling cascade

Piotr T. Filipczak; Cynthia L. Thomas; Wenshu Chen; Andrew Salzman; Jacob D. McDonald; Yong Lin; Steven A. Belinsky

Tuberous sclerosis complex (TSC) is a genetic multiorgan disorder characterized by the development of neoplastic lesions in kidney, lung, brain, heart, and skin. It is caused by an inactivating mutation in tumor suppressor genes coding the TSC1/TSC2 complex, resulting in the hyperactivation of mTOR- and Raf/MEK/MAPK-dependent signaling that stimulates tumor cell proliferation and metastasis. Despite its oncogenic effect, cells with TSC deficiency were more sensitive to oxidative stress and dependent on mitochondrial metabolism, providing a rationale for a new therapeutic approach. The current study shows that simultaneous inhibition of two major pathways regulating redox homeostasis using l-buthionine-sulfoximine (BSO, glutathione synthesis inhibitor) and auranofin (thioredoxin reductase inhibitor) induces oxidative burst, mitochondrial damage, and necrotic cell death in TSC-deficient cells in a highly synergistic and cell context-specific manner. Furthermore, blocking RIP1/RIP3/MLKL-dependent signaling using chemical inhibitors necrostatin-1 (Nec-1) and necrosulfonamide (NSA) synergizes with BSO and auranofin in killing TSC-deficient cells. Expression analysis demonstrated that RIP1, RIP3, and MLKL protein levels are elevated in cells with TSC2 deficiency, and their inactivation enhances mitochondrial dysfunction in a glutaminolysis-dependent and autophagy-independent manner. Finally, supplementation with the mitochondrial metabolite α-ketoglutarate, whose synthesis is regulated by RIP1/RIP3/MLKL, rescues cells from the sensitizing effect of Nec-1 and NSA. Together, this study identifies a previously unrecognized novel regulated necrotic death pathway that involves mitochondrial homeostasis, is suppressed by the RIP1/RIP3/MLKL signaling in TSC-deficient cells, and could be a promising therapeutic target for TSC-associated tumors. Cancer Res; 76(24); 7130-9. ©2016 AACR.


Cancer Prevention Research | 2017

Gene Methylation Biomarkers in Sputum and Plasma as Predictors for Lung Cancer Recurrence

Steven A. Belinsky; Shuguang Leng; Guodong Wu; Cynthia L. Thomas; Maria A. Picchi; Sandra J. Lee; Seena C. Aisner; Suresh S. Ramalingam; Fadlo R. Khuri; Daniel D. Karp

Detection of methylated genes in exfoliated cells from the lungs of smokers provides an assessment of the extent of field cancerization, is a validated biomarker for predicting lung cancer, and provides some discrimination when interrogated in blood. The potential utility of this 8-gene methylation panel for predicting tumor recurrence has not been assessed. The Eastern Cooperative Oncology Group initiated a prevention trial (ECOG-ACRIN5597) that enrolled resected stage I non–small cell lung cancer patients who were randomized 2:1 to receive selenized yeast versus placebo for 4 years. We conducted a correlative biomarker study to assess prevalence for methylation of the 8-gene panel in longitudinally collected sputum and blood after tumor resection to determine whether selenium alters their methylation profile and whether this panel predicts local and/or distant recurrence. Patients (N = 1,561) were enrolled into the prevention trial; 565 participated in the biomarker study with 122 recurrences among that group. Assessing the association between recurrence and risk of gene methylation longitudinally for up to 48 months showed a 1.4-fold increase in OR for methylation in sputum in the placebo group independent of location (local or distant). Kaplan–Meier curves evaluating the association between number of methylated genes and time to recurrence showed no increased risk in sputum, while a significant HR of 1.5 was seen in plasma. Methylation detection in sputum and blood is associated with risk for recurrence. Cancer Prev Res; 10(11); 635–40. ©2017 AACR.


Cancer Research | 2015

Implication of a Chromosome 15q15.2 Locus in Regulating UBR1 and Predisposing Smokers to MGMT Methylation in Lung

Shuguang Leng; Guodong Wu; Leonard B. Collins; Cynthia L. Thomas; Carmen S. Tellez; Andrew R. Jauregui; Maria A. Picchi; Xiequn Zhang; Daniel E. Juri; Dhimant Desai; Shantu Amin; Richard E. Crowell; Christine A. Stidley; Yushi Liu; James A. Swenberg; Yong Lin; Marc G. Wathelet; Frank D. Gilliland; Steven A. Belinsky

O(6)-Methylguanine-DNA methyltransferase (MGMT) is a DNA repair enzyme that protects cells from carcinogenic effects of alkylating agents; however, MGMT is silenced by promoter hypermethylation during carcinogenesis. A single-nucleotide polymorphism (SNP) in an enhancer in the MGMT promoter was previously identified to be highly significantly associated with risk for MGMT methylation in lung cancer and sputum from smokers. To further genetic investigations, a genome-wide association and replication study was conducted in two smoker cohorts to identify novel loci for MGMT methylation in sputum that were independent of the MGMT enhancer polymorphism. Two novel trans-acting loci (15q15.2 and 17q24.3) that were identified acted together with the enhancer SNP to empower risk prediction for MGMT methylation. We found that the predisposition to MGMT methylation arising from the 15q15.2 locus involved regulation of the ubiquitin protein ligase E3 component UBR1. UBR1 attenuation reduced turnover of MGMT protein and increased repair of O6-methylguanine in nitrosomethylurea-treated human bronchial epithelial cells, while also reducing MGMT promoter activity and abolishing MGMT induction. Overall, our results substantiate reduced gene transcription as a major mechanism for predisposition to MGMT methylation in the lungs of smokers, and support the importance of UBR1 in regulating MGMT homeostasis and DNA repair of alkylated DNA adducts in cells.

Collaboration


Dive into the Cynthia L. Thomas's collaboration.

Top Co-Authors

Avatar

Steven A. Belinsky

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Shuguang Leng

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Maria A. Picchi

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Yushi Liu

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank D. Gilliland

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Guodong Wu

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christin M. Yingling

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Donna M. Klinge

Lovelace Respiratory Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge