Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yushi Liu is active.

Publication


Featured researches published by Yushi Liu.


Oncogene | 2014

A JNK-mediated autophagy pathway that triggers c-IAP degradation and necroptosis for anticancer chemotherapy

Weiyang He; Qiong Wang; Balasubramanian Srinivasan; Jennings Xu; Mabel T. Padilla; Zi Li; Xia Wang; Yushi Liu; Xin Gou; Han-Ming Shen; Chengguo Xing; Yong Lin

Killing cancer cells through the induction of apoptosis is one of the main mechanisms of chemotherapy. However, numerous cancer cells have primary or acquired apoptosis resistance, resulting in chemoresistance. In this study, using a novel chalcone derivative chalcone-24 (Chal-24), we identified a novel anticancer mechanism through autophagy-mediated necroptosis (RIP1- and RIP3-dependent necrosis). Chal-24 potently killed different cancer cells with induction of necrotic cellular morphology while causing no detectable caspase activation. Blocking the necroptosis pathway with either necrostatin-1 or by knockdown of RIP1 and RIP3 effectively blocked the cytotoxicity of Chal-24, suggesting that Chal-24-induced cell death is associated with necroptosis. Chal-24 robustly activated JNK and ERK and blockage of which effectively suppressed Chal-24-induced cytotoxicity. In addition, Chal-24 strongly induced autophagy that is dependent on JNK-mediated phosphorylation of Bcl-2 and Bcl-xL and dissociation of Bcl-2 or Bcl-xL from Beclin-1. Importantly, suppression of autophagy, with either pharmacological inhibitors or small interfering RNAs targeting the essential autophagy components ATG7 and Beclin-1, effectively attenuated Chal-24-induced cell death. Furthermore, we found that autophagy activation resulted in c-IAP1 and c-IAP2 degradation and formation of the Ripoptosome that contributes to necroptosis. These results thus establish a novel mechanism for killing cancer cells that involves autophagy-mediated necroptosis, which may be employed for overcoming chemoresistance.


Human Genomics | 2013

Softwares and methods for estimating genetic ancestry in human populations

Yushi Liu; Toru Nyunoya; Shuguang Leng; Steven A. Belinsky; Yohannes Tesfaigzi; Shannon Bruse

The estimation of genetic ancestry in human populations has important applications in medical genetic studies. Genetic ancestry is used to control for population stratification in genetic association studies, and is used to understand the genetic basis for ethnic differences in disease susceptibility. In this review, we present an overview of genetic ancestry estimation in human disease studies, followed by a review of popular softwares and methods used for this estimation.


International Journal of Cancer | 2014

SGI-110 and entinostat therapy reduces lung tumor burden and reprograms the epigenome

Carmen S. Tellez; Marcie J. Grimes; Maria A. Picchi; Yushi Liu; Thomas H. March; Matthew D. Reed; Aram Oganesian; Pietro Taverna; Steven A. Belinsky

The DNA methyltransferase (DNMT) inhibitor vidaza (5‐Azacytidine) in combination with the histone deacetylase inhibitor entinostat has shown promise in treating lung cancer and this has been replicated in our orthotopic lung cancer model. However, the effectiveness of DNMT inhibitors against solid tumors is likely impacted by their limited stability and rapid inactivation by cytidine deaminase (CDA) in the liver. These studies were initiated to test the efficacy of SGI‐110, a dinucleotide containing decitabine that is resistant to deamination by CDA, as a single agent and in combination with entinostat. Evaluation of in vivo plasma concentrations and pharmacokinetic properties of SGI‐110 showed rapid conversion to decitabine and a plasma half‐life of 4 hr. SGI‐110 alone or in combination with entinostat reduced tumor burden of a K‐ras/p53 mutant lung adenocarcinoma cell line (Calu6) engrafted orthotopically in nude rats by 35% and 56%, respectively. SGI‐110 caused widespread demethylation of more than 300 gene promoters and microarray analysis revealed expression changes for 212 and 592 genes with SGI‐110 alone or in combination with entinostat. Epigenetic therapy also induced demethylation and expression of cancer testis antigen genes that could sensitize tumor cells to subsequent immunotherapy. In the orthotopically growing tumors, highly significant gene expression changes were seen in key cancer regulatory pathways including induction of p21 and the apoptotic gene BIK. Moreover, SGI‐110 in combination with entinostat caused widespread epigenetic reprogramming of EZH2‐target genes. These preclinical in vivo findings demonstrate the clinical potential of SGI‐110 for reducing lung tumor burden through reprogramming the epigenome.


PLOS ONE | 2013

Chronological Changes in MicroRNA Expression in the Developing Human Brain

Michael P. Moreau; Shannon Bruse; Rebecka Jörnsten; Yushi Liu; Linda M. Brzustowicz

Objective MicroRNAs (miRNAs) are endogenously expressed noncoding RNA molecules that are believed to regulate multiple neurobiological processes. Expression studies have revealed distinct temporal expression patterns in the developing rodent and porcine brain, but comprehensive profiling in the developing human brain has not been previously reported. Methods We performed microarray and TaqMan-based expression analysis of all annotated mature miRNAs (miRBase 10.0) as well as 373 novel, predicted miRNAs. Expression levels were measured in 48 post-mortem brain tissue samples, representing gestational ages 14–24 weeks, as well as early postnatal and adult time points. Results Expression levels of 312 miRNAs changed significantly between at least two of the broad age categories, defined as fetal, young, and adult. Conclusions We have constructed a miRNA expression atlas of the developing human brain, and we propose a classification scheme to guide future studies of neurobiological function.


Oncogene | 2012

SULF2 methylation is prognostic for lung cancer survival and increases sensitivity to topoisomerase-I inhibitors via induction of ISG15

Mathewos Tessema; Christin M. Yingling; Cynthia L. Thomas; Donna M. Klinge; Amanda M. Bernauer; Yushi Liu; Sanja Dacic; Jill M. Siegfried; Suzanne E. Dahlberg; Joan H. Schiller; Steven A. Belinsky

The heparan sulfate 6-O-endosulfatase (SULF2) promotes growth and metastasis of solid tumors. We recently identified that cytosine methylation of the SULF2 promoter is associated with better survival of resected lung adenocarcinoma patients, and now also demonstrates a marginal improvement in survival of advanced non-small cell lung cancer (NSCLC) patients receiving standard chemotherapy (hazard ratio=0.63, P=0.07). Subsequent studies focused on investigating the effect of methylation on SULF2 expression and its genome-wide impact. The genes and pathways modulated by epigenetic inactivation of SULF2 and the effects on sensitivity to chemotherapy were characterized in vitro and in vivo. Silencing SULF2 through small interfering RNA or methylation primarily increased expression of interferon-inducible genes including ISG15, a marker for increased sensitivity to topoisomerase-1 inhibitors such as camptothecin (CPT). NSCLC cell lines with methylated SULF2 (SULF2M) express 60-fold higher ISG15 compared with SULF2 unmethylated (SULF2U) NSCLC cell lines and normal human bronchial epithelial cells. In vitro, SULF2M and high ISG15 (ISG15H)-expressing NSCLC cell lines were 134-fold more sensitive to CPT than SULF2U and low ISG15 (ISG15L)-expressing cell lines. Topotecan, a soluble analog of CPT and FDA-approved anticancer drug, dramatically arrested the growth of SULF2M-ISG15H, but not SULF2U-ISG15L lung tumors in nude mice (P<0.002). Similarly, high ISG15 expression that is comparable to the topotecan (TPT)-sensitive NSCLC cell lines was found in tumors from 25% of NSCLC patients compared with normal lung, indicating a potential to identify and target the most sensitive NSCLC subpopulation for personalized TPT therapy.


PLOS ONE | 2012

Differential Epigenetic Regulation of TOX Subfamily High Mobility Group Box Genes in Lung and Breast Cancers

Mathewos Tessema; Christin M. Yingling; Marcie J. Grimes; Cynthia L. Thomas; Yushi Liu; Shuguang Leng; Nancy E. Joste; Steven A. Belinsky

Aberrant cytosine methylation affects regulation of hundreds of genes during cancer development. In this study, a novel aberrantly hypermethylated CpG island in cancer was discovered within the TOX2 promoter. TOX2 was unmethylated in normal cells but 28% lung (n = 190) and 23% breast (n = 80) tumors were methylated. Expression of two novel TOX2 transcripts identified was significantly reduced in primary lung tumors than distant normal lung (p<0.05). These transcripts were silenced in methylated lung and breast cancer cells and 5-Aza-2-deoxycytidine treatment re-expressed both. Extension of these assays to TOX, TOX3, and TOX4 genes that share similar genomic structure and protein homology with TOX2 revealed distinct methylation profiles by smoking status, histology, and cancer type. TOX was almost exclusively methylated in breast (43%) than lung (5%) cancer, whereas TOX3 was frequently methylated in lung (58%) than breast (30%) tumors. TOX4 was unmethylated in all samples and showed the highest expression in normal lung. Compared to TOX4, expression of TOX, TOX2 and TOX3 in normal lung was 25, 44, and 88% lower, respectively, supporting the premise that reduced promoter activity confers increased susceptibility to methylation during lung carcinogenesis. Genome-wide assays revealed that siRNA-mediated TOX2 knockdown modulated multiple pathways while TOX3 inactivation targeted neuronal development and function. Although these knockdowns did not result in further phenotypic changes of lung cancer cells in vitro, the impact on tissue remodeling, inflammatory response, and cell differentiation pathways suggest a potential role for TOX2 in modulating tumor microenvironment.


PLOS ONE | 2012

Exhaled Aerosol Transmission of Pandemic and Seasonal H1N1 Influenza Viruses in the Ferret

Frederick Koster; Kristine Gouveia; Yue Zhou; Kristin S. Lowery; Robert Russell; Heather MacInnes; Zemmie Pollock; R. Colby Layton; Jennifer Cromwell; Denise Toleno; John Pyle; Michael Zubelewicz; Kevin S. Harrod; Rangarajan Sampath; Steven Hofstadler; Peng Gao; Yushi Liu; Yung-Sung Cheng

Person-to-person transmission of influenza viruses occurs by contact (direct and fomites) and non-contact (droplet and small particle aerosol) routes, but the quantitative dynamics and relative contributions of these routes are incompletely understood. The transmissibility of influenza strains estimated from secondary attack rates in closed human populations is confounded by large variations in population susceptibilities. An experimental method to phenotype strains for transmissibility in an animal model could provide relative efficiencies of transmission. We developed an experimental method to detect exhaled viral aerosol transmission between unanesthetized infected and susceptible ferrets, measured aerosol particle size and number, and quantified the viral genomic RNA in the exhaled aerosol. During brief 3-hour exposures to exhaled viral aerosols in airflow-controlled chambers, three strains of pandemic 2009 H1N1 strains were frequently transmitted to susceptible ferrets. In contrast one seasonal H1N1 strain was not transmitted in spite of higher levels of viral RNA in the exhaled aerosol. Among three pandemic strains, the two strains causing weight loss and illness in the intranasally infected ‘donor’ ferrets were transmitted less efficiently from the donor than the strain causing no detectable illness, suggesting that the mucosal inflammatory response may attenuate viable exhaled virus. Although exhaled viral RNA remained constant, transmission efficiency diminished from day 1 to day 5 after donor infection. Thus, aerosol transmission between ferrets may be dependent on at least four characteristics of virus-host relationships including the level of exhaled virus, infectious particle size, mucosal inflammation, and viral replication efficiency in susceptible mucosa.


PLOS ONE | 2012

MUC1 Contributes to BPDE-Induced Human Bronchial Epithelial Cell Transformation through Facilitating EGFR Activation

Xiuling Xu; Lang Bai; Wenshu Chen; Mabel T. Padilla; Yushi Liu; Kwang Chul Kim; Steven A. Belinsky; Yong Lin

Although it is well known that epidermal growth factor receptor (EGFR) is involved in lung cancer progression, whether EGFR contributes to lung epithelial cell transformation is less clear. Mucin 1 (MUC1 in human and Muc1 in animals), a glycoprotein component of airway mucus, is overexpressed in lung tumors; however, its role and underlying mechanisms in early stage lung carcinogenesis is still elusive. This study provides strong evidence demonstrating that EGFR and MUC1 are involved in bronchial epithelial cell transformation. Knockdown of MUC1 expression significantly reduced transformation of immortalized human bronchial epithelial cells induced by benzo[a]pyrene diol epoxide (BPDE), the active form of the cigarette smoke (CS) carcinogen benzo(a)pyrene (BaP)s. BPDE exposure robustly activated a pathway consisting of EGFR, Akt and ERK, and blocking this pathway significantly increased BPDE-induced cell death and inhibited cell transformation. Suppression of MUC1 expression resulted in EGFR destabilization and inhibition of the BPDE-induced activation of Akt and ERK and increase of cytotoxicity. These results strongly suggest an important role for EGFR in BPDE-induced transformation, and substantiate that MUC1 is involved in lung cancer development, at least partly through mediating carcinogen-induced activation of the EGFR-mediated cell survival pathway that facilitates cell transformation.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2011

Human immunodeficiency virus- transgenic rats exhibit pulmonary hypertension.

Amie K. Lund; JoAnn Lucero; Lindsay M. Herbert; Yushi Liu; Jay S. Naik

Human immunodeficiency virus (HIV)-associated pulmonary arterial hypertension (PAH) is a serious noninfectious disease involving an aberrant increase in pressure in the blood vessels of the lung, which leads to right ventricular (RV) heart failure and can eventually result in death. A lack of viable animal models of HIV-PAH has limited the identification of signaling pathways involved in HIV-mediated onset and progression of PAH. To determine whether the HIV-1 transgenic (HIV Tg) rat displays pathophysiological end points associated with PAH, we evaluated peak RV systolic pressure (RVSP), RV hypertrophy, pulmonary vessel remodeling, and alterations in gene expression by real-time PCR and microarray. RVSP was measured by RV catheterization via the right jugular vein in 3- and 9-mo-old HIV Tg and age-matched Fischer 344 (control) male rats while under 2% isoflurane anesthesia. RVSP was elevated in the HIV Tg rats (34.2 ± 2.5 mmHg) compared with the F344 controls (21.2 ± 2.5 mmHg), with more significant elevations in the 9-mo-old HIV Tg rats (42.5 ± 3.7 mmHg). We observed significant increases in RV wall thickness in HIV Tg rats compared with controls, both histologically and by echocardiograph measurement. HIV Tg rats also show increased thickening of the pulmonary artery and remodeling of small pulmonary arteries, as well as altered expression of gene pathways associated with PAH. These data represent the first analysis of PAH in HIV Tg rats and suggest that this model will be useful for investigating pathways and identifying potential therapies for HIV-PAH.


Cancer Research | 2012

Genetic Determinants for Promoter Hypermethylation in the Lungs of Smokers: A Candidate Gene-Based Study

Shuguang Leng; Christine A. Stidley; Yushi Liu; Christopher K. Edlund; Randall P. Willink; Younghun Han; Maria Teresa Landi; Michael J. Thun; Maria A. Picchi; Shannon Bruse; Richard E. Crowell; David Van Den Berg; Neil E. Caporaso; Christopher I. Amos; Jill M. Siegfried; Yohannes Tesfaigzi; Frank D. Gilliland; Steven A. Belinsky

The detection of tumor suppressor gene promoter methylation in sputum-derived exfoliated cells predicts early lung cancer. Here, we identified genetic determinants for this epigenetic process and examined their biologic effects on gene regulation. A two-stage approach involving discovery and replication was used to assess the association between promoter hypermethylation of a 12-gene panel and common variation in 40 genes involved in carcinogen metabolism, regulation of methylation, and DNA damage response in members of the Lovelace Smokers Cohort (N = 1,434). Molecular validation of three identified variants was conducted using primary bronchial epithelial cells. Association of study-wide significance (P < 8.2 × 10(-5)) was identified for rs1641511, rs3730859, and rs1883264 in TP53, LIG1, and BIK, respectively. These single-nucleotide polymorphisms (SNP) were significantly associated with altered expression of the corresponding genes in primary bronchial epithelial cells. In addition, rs3730859 in LIG1 was also moderately associated with increased risk for lung cancer among Caucasian smokers. Together, our findings suggest that genetic variation in DNA replication and apoptosis pathways impacts the propensity for gene promoter hypermethylation in the aerodigestive tract of smokers. The incorporation of genetic biomarkers for gene promoter hypermethylation with clinical and somatic markers may improve risk assessment models for lung cancer.

Collaboration


Dive into the Yushi Liu's collaboration.

Top Co-Authors

Avatar

Steven A. Belinsky

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Maria A. Picchi

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Shuguang Leng

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Frank D. Gilliland

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cynthia L. Thomas

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Carmen S. Tellez

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Christin M. Yingling

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Mathewos Tessema

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Shannon Bruse

Lovelace Respiratory Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge