Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cynthia Moore is active.

Publication


Featured researches published by Cynthia Moore.


The Journal of Neuroscience | 2004

Dopamine Modulates Release from Corticostriatal Terminals

Nigel S. Bamford; Siobhan Robinson; Richard D. Palmiter; John A. Joyce; Cynthia Moore; Charles K. Meshul

Normal striatal function is dependent on the availability of synaptic dopamine to modulate neurotransmission. Within the striatum, excitatory inputs from cortical glutamatergic neurons and modulatory inputs from midbrain dopamine neurons converge onto dendritic spines of medium spiny neurons. In addition to dopamine receptors on medium spiny neurons, D2 receptors are also present on corticostriatal terminals, where they act to dampen striatal excitation. To determine the effect of dopamine depletion on corticostriatal activity, we used the styryl dye FM1-43 in combination with multiphoton confocal microscopy in slice preparations from dopamine-deficient (DD) and reserpine-treated mice. The activity-dependent release of FM1-43 out of corticostriatal terminals allows a measure of kinetics quantified by the halftime decay of fluorescence intensity. In DD, reserpine-treated, and control mice, exposure to the D2-like receptor agonist quinpirole revealed modulation of corticostriatal kinetics with depression of FM1-43 destaining. In DD and reserpine-treated mice, quinpirole decreased destaining to a greater extent, and at a lower dose, consistent with hypersensitive corticostriatal D2 receptors. Compared with controls, slices from DD mice did not react to amphetamine or to cocaine with dopamine-releasing striatal stimulation unless the animals were pretreated with l-3,4-dihydroxyphenylalanine (l-dopa). Electron microscopy and immunogold labeling for glutamate terminals within the striatum demonstrated that the observed differences in kinetics of corticostriatal terminals in DD mice were not attributable to aberrant cytoarchitecture or glutamate density. Microdialysis revealed that basal extracellular striatal glutamate was normal in DD mice. These data indicate that dopamine deficiency results in morphologically normal corticostriatal terminals with hypersensitive D2 receptors.


Experimental Neurology | 2000

Alterations in Rat Striatal Glutamate Synapses Following a Lesion of the Cortico- and/or Nigrostriatal Pathway

Charles K. Meshul; Jeff P. Cogen; Heng-Wei Cheng; Cynthia Moore; Lisa Krentz; Thomas H. McNeill

Ultrastructural changes within the ipsilateral dorsolateral striatum were investigated 1 month following a unilateral ablation of the rat frontal cortex (CTX), removing corticostriatal input, or injection of the neurotoxin, 6-hydroxydopamine (6-OHDA), into the substantia nigra pars compacta, removing nigrostriatal input. In addition, a combined ipsilateral cortical and 6-OHDA lesion (CTX/6-OHDA) was carried out. We find that following a CTX, 6-OHDA, or CTX/6-OHDA lesion, there was a significant decrease in the density of striatal nerve terminal glutamate immunoreactivity compared to the control group. There was also a significant increase in all three lesion groups in the mean percentage of asymmetrical synapses associated with a perforated postsynaptic density. There was a large increase within the CTX/6-OHDA-lesioned group and a smaller but still significant increase in the CTX-lesioned group in the percentage of terminals or boutons with multiple synaptic contacts (i.e., multiple synaptic boutons, MSBs), compared to either the 6-OHDA or the control group. There was no change in any of these measurements within the contralateral striatum. There was a significant decrease in the number of apomorphine-induced contralateral rotations in the CTX/6-OHDA versus the 6-OHDA-lesioned group. Animals receiving just the single CTX or 6-OHDA lesion recovered in motor function compared to the control group as measured by the Rotorod test, while the CTX/6-ODA-lesioned group recovered to less than 50% of the control level. The data suggest that following a CTX and/or 6-OHDA lesion, there is an increase in striatal glutamatergic function. The large increase in the percentage of MSBs in the combined lesion group suggests that dopamine or other factors released by the dopamine terminals assist in regulating synapse formation.


The Journal of Neuroscience | 2014

Presynaptic Alpha-Synuclein Aggregation in a Mouse Model of Parkinson's Disease

Kateri J. Spinelli; Jonathan Taylor; Valerie R. Osterberg; Madeline J. Churchill; Eden Pollock; Cynthia Moore; Charles K. Meshul; Vivek K. Unni

Parkinsons disease and dementia with Lewy bodies are associated with abnormal neuronal aggregation of α-synuclein. However, the mechanisms of aggregation and their relationship to disease are poorly understood. We developed an in vivo multiphoton imaging paradigm to study α-synuclein aggregation in mouse cortex with subcellular resolution. We used a green fluorescent protein-tagged human α-synuclein mouse line that has moderate overexpression levels mimicking human disease. Fluorescence recovery after photobleaching (FRAP) of labeled protein demonstrated that somatic α-synuclein existed primarily in an unbound, soluble pool. In contrast, α-synuclein in presynaptic terminals was in at least three different pools: (1) as unbound, soluble protein; (2) bound to presynaptic vesicles; and (3) as microaggregates. Serial imaging of microaggregates over 1 week demonstrated a heterogeneous population with differing α-synuclein exchange rates. The microaggregate species were resistant to proteinase K, phosphorylated at serine-129, oxidized, and associated with a decrease in the presynaptic vesicle protein synapsin and glutamate immunogold labeling. Multiphoton FRAP provided the specific binding constants for α-synucleins binding to synaptic vesicles and its effective diffusion coefficient in the soma and axon, setting the stage for future studies targeting synuclein modifications and their effects. Our in vivo results suggest that, under moderate overexpression conditions, α-synuclein aggregates are selectively found in presynaptic terminals.


Experimental Neurology | 2003

Acute and subchronic MPTP administration differentially affects striatal glutamate synaptic function.

Siobhan Robinson; Pierre Freeman; Cynthia Moore; Justin C. Touchon; Lisa Krentz; Charles K. Meshul

We previously reported that 1 month following unilateral loss (>95%) of striatal dopamine, there is an increase in striatal glutamate function as measured by in vivo microdialysis and quantitative immuno-gold electron microscopy, Neuroscience 88, 1-16). The goal of this study was to determine the effect of bilateral loss of striatal dopamine on striatal glutamate function following acute or subchronic administration of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to C57/B6J mice. Animals were administered either single injections (ip) of 30 mg/kg/day for 7 days (subchronically treated group) or 20 mg/kg x 4 doses every 2 h (acutely treated group) of the toxin or saline. One month following the first injection, there was a 44 and 65% loss in the relative density of tyrosine hydroxylase (TH) immunolabeling within the dorsolateral striatum in the subchronically and acutely MPTP-treated groups compared to the saline group, respectively. There was a decrease in the basal level of extracellular glutamate within the striatum in the subchronically MPTP-treated animals compared to an increase in the acutely treated group in relationship to the saline group. Ultrastructurally, only in the acutely MPTP-treated group was there a decrease in the density of glutamate immunolabeling within nerve terminals associated with an asymmetrical synaptic contact in the dorsolateral striatum compared to either the subchronic or saline groups. In addition, there was a decrease in the relative density of GluR-2/3 subunit immunolabeling within the dorsolateral striatum in the acute MPTP compared to the saline group. These data indicate that differences in striatal glutamate function appear to be associated with the dosing interval of MPTP administration and the variable loss of striatal TH immunolabeling.


Neuroreport | 2009

Effects of subthalamic nucleus lesions and stimulation upon glutamate levels in the dopamine-depleted rat striatum

Ruth H. Walker; Rick J. Koch; John E. Sweeney; Cynthia Moore; Charles K. Meshul

It is not known how neurosurgical interventions benefit patients with Parkinsons disease. We compared the effects of electrical stimulation and electrolytic lesions of the subthalamic nucleus upon striatal extracellular glutamate levels in awake rats, either intact or which had undergone unilateral 6-hydroxydopamine lesions. Two hours of subthalamic nucleus stimulation had no effect in either group. Subthalamic nucleus lesions of intact animals increased striatal glutamate levels. Subthalamic nucleus lesions of 6-hydroxydopamine-lesioned rats decreased striatal glutamate levels. As dopamine depletion alone increased striatal glutamate, subthalamic nucleus lesioning decreased levels to normal. Thus, subthalamic nucleus lesions and short-term stimulation have different effects upon striatal glutamate. The effects of lesions differed depending upon the presence of dopamine. These results suggest that short-term electrical stimulation does not result in a direct inhibitory effect upon the subthalamic nucleus.


Synapse | 2008

Subthalamic nucleus stimulation and lesioning have distinct state-dependent effects upon striatal dopamine metabolism†

Ruth H. Walker; Rick J. Koch; Cynthia Moore; Charles K. Meshul

The mechanism by which deep brain stimulation (DBS) of the subthalamic nucleus (STN) achieves its effects in Parkinsons disease (PD) is not known. In animal models of PD, stimulation and lesioning of the STN have some effects which are the same, but others which differ, in reversing cellular and behavioral changes induced by dopamine depletion. We compared the effects of short‐term STN stimulation and lesions upon extracellular levels of dopamine and metabolites using in vivo microdialysis of the dorsal striatum of awake, intact and unilateral 6‐hydroxydopamine (6OHDA)‐lesioned rats. STN stimulation in control rats decreased striatal dopamine levels and caused a relative increase in dopamine metabolism, as expressed by HVA/dopamine and DOPAC/dopamine ratios. This suggests an increase in both vesicular dopamine release (metabolized to HVA), and release from the cytoplasmic dopamine pool (metabolized to DOPAC). STN lesions in control rats increased the HVA/dopamine ratio, also suggesting a relative increase in vesicular dopamine release. These results indicate that STN stimulation and lesioning can affect striatal dopamine metabolism in the intact system. In 6OHDA‐lesioned rats at baseline, metabolic ratios were markedly decreased as compared with controls. STN lesions of 6OHDA‐lesioned rats did not affect relative metabolic ratios as compared with baseline levels. In 6‐OHDA‐lesioned rats, STN stimulation decreased extracellular levels of dopamine, and, to a greater extent, metabolites, resulting in a decrease in metabolic ratios. This further decrease in dopamine turnover with STN stimulation would serve to maintain dopamine levels in the dopamine‐depleted striatum, and may account for the therapeutic benefit of DBS in Parkinsons disease. Synapse 63:136–146, 2009. Published 2008 Wiley‐Liss, Inc.


Experimental Neurology | 2005

Apomorphine-induced alterations in striatal and substantia nigra pars reticulata glutamate following unilateral loss of striatal dopamine.

Justin C. Touchon; Haley K. Holmer; Cynthia Moore; Brenda L. McKee; Julie Frederickson; Charles K. Meshul

We have reported time-dependent changes in extracellular glutamate within the striatum at 1 and 3 months following a unilateral lesion of the nigrostriatal pathway using the neurotoxin, 6-hydroxydopamine (6-OHDA) (Meshul, C.K., Emre, N., Nakamura, C.M., Allen, C., Donohue, M.K., Buckman, J.F., 1999. Time-dependent changes in striatal glutamate synapses following a 6-hydroxydopamine lesion. Neurosci. 88, 1-16.). The aim of the present study was to determine the effects of such a lesion on glutamate within the substantia nigra pars reticulata (SN-PR) and the effect of subchronic administration of the dopamine D-1/D-2 agonist, apomorphine, on extracellular glutamate within both the striatum and the SN-PR using in vivo microdialysis. One month after the lesion, there is an increase in extracellular glutamate within the striatum and apomorphine treatment leads to a further increase. Within the SN-PR, a loss of striatal dopamine leads to a decrease in extracellular glutamate, while apomorphine treatment leads to a further decrease in nigral glutamate. Three months after a 6-OHDA lesion, there is a decrease in extracellular striatal glutamate, with apomorphine administration leading to essentially no further change in glutamate. The loss of striatal dopamine increased extracellular glutamate within the SN-PR while apomorphine administration resulted in a decrease in extracellular glutamate back to the value observed in the control group. The data suggests that the increase in striatal glutamate 1 month following a 6-OHDA lesion alone or following subchronic apomorphine is consistent with the hypothesis that a decrease in glutamate within the SN-PR leads to activation of the thalamo-cortico-striatal pathway. The decrease in striatal glutamate 3 months after a nigrostriatal lesion is also consistent with the observed increase in extracellular glutamate within the SN-PR, thus leading to a decrease in output of the thalamo-cortico-striatal pathway.


Frontiers in Cellular Neuroscience | 2015

Neuronal gamma-aminobutyric acid (GABA) type A receptors undergo cognate ligand chaperoning in the endoplasmic reticulum by endogenous GABA

Ping Wang; Randa S. Eshaq; Charles K. Meshul; Cynthia Moore; Rebecca L. Hood; Nancy J. Leidenheimer

GABAA receptors mediate fast inhibitory neurotransmission in the brain. Dysfunction of these receptors is associated with various psychiatric/neurological disorders and drugs targeting this receptor are widely used therapeutic agents. Both the efficacy and plasticity of GABAA receptor-mediated neurotransmission depends on the number of surface GABAA receptors. An understudied aspect of receptor cell surface expression is the post-translational regulation of receptor biogenesis within the endoplasmic reticulum (ER). We have previously shown that exogenous GABA can act as a ligand chaperone of recombinant GABAA receptors in the early secretory pathway leading us to now investigate whether endogenous GABA facilitates the biogenesis of GABAA receptors in primary cerebral cortical cultures. In immunofluorescence labeling experiments, we have determined that neurons expressing surface GABAA receptors contain both GABA and its degradative enzyme GABA transaminase (GABA-T). Treatment of neurons with GABA-T inhibitors, a treatment known to increase intracellular GABA levels, decreases the interaction of the receptor with the ER quality control protein calnexin, concomittantly increasing receptor forward-trafficking and plasma membrane insertion. The effect of GABA-T inhibition on the receptor/calnexin interaction is not due to the activation of surface GABAA or GABAB receptors. Consistent with our hypothesis that GABA acts as a cognate ligand chaperone in the ER, immunogold-labeling of rodent brain slices reveals the presence of GABA within the rough ER. The density of this labeling is similar to that present in mitochondria, the organelle in which GABA is degraded. Lastly, the effect of GABA-T inhibition on the receptor/calnexin interaction was prevented by pretreatment with a GABA transporter inhibitor. Together, these data indicate that endogenous GABA acts in the rough ER as a cognate ligand chaperone to facilitate the biogenesis of neuronal GABAA receptors.


Journal of Neuroscience Research | 2010

Effects of zona incerta lesions on striatal neurochemistry and behavioral asymmetry in 6‐hydroxydopamine‐lesioned rats

Ruth H. Walker; Georgia Davies; Rick J. Koch; Andrew K. Haack; Cynthia Moore; Charles K. Meshul

Analysis of optimal sites for neurosurgical interventions in patients with Parkinsons disease (PD) suggests that significant clinical benefits may be achieved by involvement of the zona incerta (ZI). Unilateral electrolytic ZI lesions were made in intact and ipsilaterally 6‐hydroxydopamine (6OHDA)‐lesioned rats. Extracellular levels of glutamate, dopamine, and its metabolites in the ipsilateral striatum of awake rats were measured by using microdialysis, and tests of behavioral asymmetry were performed. In intact rats, ZI lesions had no effect on striatal extracellular glutamate or absolute levels of dopamine or metabolites, but dopamine metabolism decreased. After ZI lesions, contralateral forepaw use decreased in the forepaw adjusting steps test, but there was no change in response to vibrissa stimulation or cylinder exploration. There was no development of rotational asymmetry with amphetamine. In 6OHDA‐lesioned rats, striatal extracellular glutamate levels were elevated compared with controls. ZI lesions reduced the increased levels of glutamate back to normal values. ZI lesions reduced dopamine and homovanillic acid levels and showed a trend toward a decrease in dopamine metabolism. 6OHDA‐lesioned rats demonstrated the expected asymmetry of motor behaviors. After ZI lesions, ipsilateral turns following amphetamine injection were reduced, and there was a trend toward improved symmetry of forepaw use as determined with the forepaw adjusting steps test. There was no change in forepaw use with vibrissa stimulation or cylinder exploration. These data indicate that lesions of the ZI can affect striatal neurochemistry and motor behavioral asymmetry and suggest potential mechanisms by which ZI lesions may improve symptoms in PD.


Brain Research Bulletin | 2017

Plastic changes at corticostriatal synapses predict improved motor function in a partial lesion model of Parkinson’s disease

Eduard Bentea; Cynthia Moore; Lauren Deneyer; Lise Verbruggen; Madeline J. Churchill; Rebecca L. Hood; Charles K. Meshul; Ann Massie

In Parkinsons disease, striatal dopamine depletion leads to plastic changes at excitatory corticostriatal and thalamostriatal synapses. The functional consequences of these responses on the expression of behavioral deficits are incompletely understood. In addition, most of the information on striatal synaptic plasticity has been obtained in models with severe striatal dopamine depletion, and less is known regarding changes during early stages of striatal denervation. Using a partial model of nigral cell loss based on intranigral injection of the proteasome inhibitor lactacystin, we demonstrate ultrastructural changes at corticostriatal synapses with a 15% increase in the length and 30% increase in the area of the postsynaptic densities at corticostriatal synapses 1 week following toxin administration. This increase was positively correlated with the performance of lactacystin-lesioned mice on the rotarod task, such that mice with a greater increase in the size of the postsynaptic density performed better on the rotarod task. We therefore propose that lengthening of the postsynaptic density at corticostriatal synapses acts as a compensatory mechanism to maintain motor function under conditions of partial dopamine depletion. The ultrastructure of thalamostriatal synapses remained unchanged following lactacystin administration. Our findings provide novel insights into the mechanisms of synaptic plasticity and behavioral compensation following partial loss of substantia nigra pars compacta neurons, such as those occurring during the early stages of Parkinsons disease.

Collaboration


Dive into the Cynthia Moore's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ruth H. Walker

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ann Massie

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Eduard Bentea

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Lauren Deneyer

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Lise Verbruggen

Vrije Universiteit Brussel

View shared research outputs
Researchain Logo
Decentralizing Knowledge