Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Madeline J. Churchill is active.

Publication


Featured researches published by Madeline J. Churchill.


PLOS ONE | 2013

Loss of Leucine-rich Repeat Kinase 2 (LRRK2) in Rats Leads to Progressive Abnormal Phenotypes in Peripheral Organs

Marco A. S. Baptista; Kuldip D. Dave; Mark Frasier; Todd Sherer; Melanie Greeley; Melissa J. Beck; J. S. Varsho; George A. Parker; Cindy Moore; Madeline J. Churchill; Charles K. Meshul; Brian K. Fiske

The objective of this study was to evaluate the pathology time course of the LRRK2 knockout rat model of Parkinson’s disease at 1-, 2-, 4-, 8-, 12-, and 16-months of age. The evaluation consisted of histopathology and ultrastructure examination of selected organs, including the kidneys, lungs, spleen, heart, and liver, as well as hematology, serum, and urine analysis. The LRRK2 knockout rat, starting at 2-months of age, displayed abnormal kidney staining patterns and/or morphologic changes that were associated with higher serum phosphorous, creatinine, cholesterol, and sorbitol dehydrogenase, and lower serum sodium and chloride compared to the LRRK2 wild-type rat. Urinalysis indicated pronounced changes in LRRK2 knockout rats in urine specific gravity, total volume, urine potassium, creatinine, sodium, and chloride that started as early as 1- to 2-months of age. Electron microscopy of 16-month old LRRK2 knockout rats displayed an abnormal kidney, lung, and liver phenotype. In contrast, there were equivocal or no differences in the heart and spleen of LRRK2 wild-type and knockout rats. These findings partially replicate data from a recent study in 4-month old LRRK2 knockout rats [1] and expand the analysis to demonstrate that the renal and possibly lung and liver abnormalities progress with age. The characterization of LRRK2 knockout rats may prove to be extremely valuable in understanding potential safety liabilities of LRRK2 kinase inhibitor therapeutics for treating Parkinson’s disease.


The Journal of Neuroscience | 2014

Presynaptic Alpha-Synuclein Aggregation in a Mouse Model of Parkinson's Disease

Kateri J. Spinelli; Jonathan Taylor; Valerie R. Osterberg; Madeline J. Churchill; Eden Pollock; Cynthia Moore; Charles K. Meshul; Vivek K. Unni

Parkinsons disease and dementia with Lewy bodies are associated with abnormal neuronal aggregation of α-synuclein. However, the mechanisms of aggregation and their relationship to disease are poorly understood. We developed an in vivo multiphoton imaging paradigm to study α-synuclein aggregation in mouse cortex with subcellular resolution. We used a green fluorescent protein-tagged human α-synuclein mouse line that has moderate overexpression levels mimicking human disease. Fluorescence recovery after photobleaching (FRAP) of labeled protein demonstrated that somatic α-synuclein existed primarily in an unbound, soluble pool. In contrast, α-synuclein in presynaptic terminals was in at least three different pools: (1) as unbound, soluble protein; (2) bound to presynaptic vesicles; and (3) as microaggregates. Serial imaging of microaggregates over 1 week demonstrated a heterogeneous population with differing α-synuclein exchange rates. The microaggregate species were resistant to proteinase K, phosphorylated at serine-129, oxidized, and associated with a decrease in the presynaptic vesicle protein synapsin and glutamate immunogold labeling. Multiphoton FRAP provided the specific binding constants for α-synucleins binding to synaptic vesicles and its effective diffusion coefficient in the soma and axon, setting the stage for future studies targeting synuclein modifications and their effects. Our in vivo results suggest that, under moderate overexpression conditions, α-synuclein aggregates are selectively found in presynaptic terminals.


Neuroscience | 2015

Intervention with exercise restores motor deficits but not nigrostriatal loss in a progressive MPTP mouse model of Parkinson's disease.

Michelle D. Sconce; Madeline J. Churchill; R.E. Greene; Charles K. Meshul

Many studies have investigated exercise therapy in Parkinsons disease (PD) and have shown benefits in improving motor deficits. However, exercise does not slow down the progression of the disease or induce the revival of lost nigrostriatal neurons. To examine the dichotomy of behavioral improvement without the slowing or recovery of dopaminergic cell or terminal loss, we tested exercise therapy in an intervention paradigm where voluntary running wheels were installed half-way through our progressive PD mouse model. In our model, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is administered over 4 weeks with increased doses each week (8, 16, 24, 32-kg/mg). We found that after 4 weeks of MPTP treatment, mice that volunteered to exercise had behavioral recovery in several measures despite the loss of 73% and 53% tyrosine hydroxylase (TH) within the dorsolateral (DL) striatum and the substantia nigra (SN), respectively which was equivalent to the loss seen in the mice that did not exercise but were also administered MPTP for 4 weeks. Mice treated with 4 weeks of MPTP showed a 41% loss of vesicular monoamine transporter II (VMAT2), a 71% increase in the ratio of glycosylated/non-glycosylated dopamine transporter (DAT), and significant increases in glutamate transporters including VGLUT1, GLT-1, and excitatory amino acid carrier 1. MPTP mice that exercised showed recovery of all these biomarkers back to the levels seen in the vehicle group and showed less inflammation compared to the mice treated with MPTP for 4 weeks. Even though we did not measure tissue dopamine (DA) concentration, our data suggest that exercise does not alleviate motor deficits by sparing nigrostriatal neurons, but perhaps by stabilizing the extraneuronal neurotransmitters, as evident by a recovery of DA and glutamate transporters. However, suppressing inflammation could be another mechanism of this locomotor recovery. Although exercise will not be a successful treatment alone, it could supplement other pharmaceutical approaches to PD therapy.


Neuroscience | 2015

Intervention with 7,8-dihydroxyflavone blocks further striatal terminal loss and restores motor deficits in a progressive mouse model of Parkinson’s disease☆

Michelle D. Sconce; Madeline J. Churchill; Cindy Moore; Charles K. Meshul

Parkinsons disease (PD) is a progressive neurological disorder and current therapies help alleviate symptoms, but are not disease modifying. In the flavonoid class of compounds, 7,8-dihydroxyflavone (7,8-DHF) has been reported to elicit tyrosine kinase receptor B (TrkB) dimerization and autophosphorylation that further stimulates signaling cascades to promote cell survival/growth, differentiation, and plasticity. In this study we investigated if 7,8-DHF could prevent further loss of dopaminergic cells and terminals if introduced at the midpoint (i.e. intervention) of our progressive mouse model of PD. In our model, 1-methyl-4phenyl-1,2,3,6-tetrahyrdopyridine (MPTP) is administered with increased doses each week (8, 16, 24, 32-kg/mg) over a 4-week period. We found that despite 4 weeks of MPTP treatment, animals administered 7,8-DHF starting at the 2-week time period maintained 54% of the tyrosine hydroxylase (TH) levels within the dorsolateral (DL) striatum compared to the vehicle group, which was comparable to animals treated with MPTP for 2 weeks and was significantly greater compared to animals treated with MPTP for the full 4 weeks. Animals treated with MPTP and 7,8-DHF also demonstrated increased levels of, a sprouting-associated protein, superior cervical ganglion-10 (SCG10), phosphorylated TrkB (pTrkB), and phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) within the DL striatum and substantia nigra (SN) compared to the 4-week MPTP-treated animals. In addition, motor deficits seen in the 2- and 4-week MPTP-treated animals were restored following administration of 7,8-DHF. We are reporting here for the first time that intervention with 7,8-DHF blocks further loss of dopaminergic terminals and restores motor deficits in our progressive MPTP mouse model. Our data suggest that 7,8-DHF has the potential to be a translational therapy in PD.


Neuroscience Letters | 2015

MPTP-induced parkinsonism in mice alters striatal and nigral xCT expression but is unaffected by the genetic loss of xCT.

Eduard Bentea; Michelle D. Sconce; Madeline J. Churchill; Joeri Van Liefferinge; Hideyo Sato; Charles K. Meshul; Ann Massie

Nigral cell loss in Parkinsons disease (PD) is associated with disturbed glutathione (GSH) and glutamate levels, leading to oxidative stress and excitotoxicity, respectively. System xc- is a plasma membrane antiporter that couples cystine import (amino acid that can be further used for the synthesis of GSH) with glutamate export to the extracellular environment, and can thus affect both oxidative stress and glutamate excitotoxicity. In the current study, we evaluated the involvement of system xc- in a progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Our results indicate that the expression of xCT (the specific subunit of system xc-) undergoes region-specific changes in MPTP-treated mice, with increased expression in the striatum, and decreased expression in the substantia nigra. Furthermore, mice lacking xCT were equally sensitive to the neurotoxic effects of MPTP compared to wild-type (WT) mice, as they demonstrate similar decreases in striatal dopamine content, striatal tyrosine hydroxylase (TH) expression, nigral TH immunopositive neurons and forelimb grip strength, five weeks after commencing MPTP treatment. Altogether, our data indicate that progressive lesioning with MPTP induces striatal and nigral dysregulation of system xc-. However, loss of system xc- does not affect MPTP-induced nigral dopaminergic neurodegeneration and motor impairment in mice.


Neuroscience | 2017

Exercise in an animal model of Parkinson’s disease: Motor recovery but not restoration of the nigrostriatal pathway

Madeline J. Churchill; L. Pflibsen; Michelle D. Sconce; Cindy Moore; K. Kim; Charles K. Meshul

Many clinical studies have reported on the benefits of exercise therapy in patients with Parkinsons disease (PD). Exercise cannot stop the progression of PD or facilitate the recovery of dopamine (DA) neurons in the substantia nigra pars compacta (SNpc) (Bega et al., 2014). To tease apart this paradox, we utilized a progressive MPTP (1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine) mouse model in which we initiated 4weeks of treadmill exercise after the completion of toxin administration (i.e., restoration). We found in our MPTP/exercise (MPTP+EX) group several measures of gait function that recovered compared to the MPTP only group. Although there was a small recovery of tyrosine hydroxylase (TH) positive DA neurons in the SNpc and terminals in the striatum, this increase was not statistically significant. These small changes in TH could not explain the improvement of motor function. The MPTP group had a significant 170% increase in the glycosylated/non-glycosylated dopamine transporter (DAT) and a 200% increase in microglial marker, IBA-1, in the striatum. The MPTP+EX group showed a nearly full recovery of these markers back to the vehicle levels. There was an increase in GLT-1 levels in the striatum due to exercise, with no change in striatal BDNF protein expression. Our data suggest that motor recovery was not prompted by any significant restoration of DA neurons or terminals, but rather the recovery of DAT and dampening the inflammatory response. Although exercise does not promote recovery of nigrostriatal DA, it should be used in conjunction with pharmaceutical methods for controlling PD symptoms.


Sleep | 2018

Dietary therapy restores glutamatergic input to orexin/hypocretin neurons after traumatic brain injury in mice

Jonathan E. Elliott; Samuel E De Luche; Madeline J. Churchill; Cindy Moore; Akiva S. Cohen; Charles K. Meshul; Miranda M. Lim

Study Objectives In previous work, dietary branched-chain amino acid (BCAA) supplementation, precursors to de novo glutamate and γ-aminobutyric acid (GABA) synthesis, restored impaired sleep-wake regulation and orexin neuronal activity following traumatic brain injury (TBI) in mice. TBI was speculated to reduce orexin neuronal activity through decreased regional excitatory (glutamate) and/or increased inhibitory (GABA) input. Therefore, we hypothesized that TBI would decrease synaptic glutamate and/or increase synaptic GABA in nerve terminals contacting orexin neurons, and BCAA supplementation would restore TBI-induced changes in synaptic glutamate and/or GABA. Methods Brain tissue was processed for orexin pre-embed diaminobenzidine labeling and glutamate or GABA postembed immunogold labeling. The density of glutamate and GABA immunogold within presynaptic nerve terminals contacting orexin-positive lateral hypothalamic neurons was quantified using electron microscopy in three groups of mice (n = 8 per group): Sham/noninjured controls, TBI without BCAA supplementation, and TBI with BCAA supplementation (given for 5 days, 48 hr post-TBI). Glutamate and GABA were also quantified within the cortical penumbral region (layer VIb) adjacent to the TBI lesion. Results In the hypothalamus and cortex, TBI decreased relative glutamate density in presynaptic terminals making axodendritic contacts. However, BCAA supplementation only restored relative glutamate density within presynaptic terminals contacting orexin-positive hypothalamic neurons. BCAA supplementation did not change relative glutamate density in presynaptic terminals making axosomatic contacts, or relative GABA density in presynaptic terminals making axosomatic or axodendritic contacts, within either the hypothalamus or cortex. Conclusions These results suggest TBI compromises orexin neuron function via decreased glutamate density and highlight BCAA supplementation as a potential therapy to restore glutamate density to orexin neurons.


Brain Research Bulletin | 2017

Plastic changes at corticostriatal synapses predict improved motor function in a partial lesion model of Parkinson’s disease

Eduard Bentea; Cynthia Moore; Lauren Deneyer; Lise Verbruggen; Madeline J. Churchill; Rebecca L. Hood; Charles K. Meshul; Ann Massie

In Parkinsons disease, striatal dopamine depletion leads to plastic changes at excitatory corticostriatal and thalamostriatal synapses. The functional consequences of these responses on the expression of behavioral deficits are incompletely understood. In addition, most of the information on striatal synaptic plasticity has been obtained in models with severe striatal dopamine depletion, and less is known regarding changes during early stages of striatal denervation. Using a partial model of nigral cell loss based on intranigral injection of the proteasome inhibitor lactacystin, we demonstrate ultrastructural changes at corticostriatal synapses with a 15% increase in the length and 30% increase in the area of the postsynaptic densities at corticostriatal synapses 1 week following toxin administration. This increase was positively correlated with the performance of lactacystin-lesioned mice on the rotarod task, such that mice with a greater increase in the size of the postsynaptic density performed better on the rotarod task. We therefore propose that lengthening of the postsynaptic density at corticostriatal synapses acts as a compensatory mechanism to maintain motor function under conditions of partial dopamine depletion. The ultrastructure of thalamostriatal synapses remained unchanged following lactacystin administration. Our findings provide novel insights into the mechanisms of synaptic plasticity and behavioral compensation following partial loss of substantia nigra pars compacta neurons, such as those occurring during the early stages of Parkinsons disease.


Acta neuropathologica communications | 2015

Cyclosporin promotes neurorestoration and cell replacement therapy in pre-clinical models of Parkinson's disease.

Anna Tamburrino; Madeline J. Churchill; Oi Wan Wan; Yolanda Colino-Sanguino; Rossana Ippolito; Sofie Bergstrand; Daniel Wolf; Niculin J. Herz; Michelle D. Sconce; Anders Björklund; Charles K. Meshul; Mickael Decressac

BackgroundThe early clinical trials using fetal ventral mesencephalic (VM) allografts in Parkinson’s disease (PD) patients have shown efficacy (albeit not in all cases) and have paved the way for further development of cell replacement therapy strategies in PD. The preclinical work that led to these clinical trials used allografts of fetal VM tissue placed into 6-OHDA lesioned rats, while the patients received similar allografts under cover of immunosuppression in an α-synuclein disease state. Thus developing models that more faithfully replicate the clinical scenario would be a useful tool for the translation of such cell-based therapies to the clinic.ResultsHere, we show that while providing functional recovery, transplantation of fetal dopamine neurons into the AAV-α-synuclein rat model of PD resulted in smaller-sized grafts as compared to similar grafts placed into the 6-OHDA-lesioned striatum. Additionally, we found that cyclosporin treatment was able to promote the survival of the transplanted cells in this allografted state and surprisingly also provided therapeutic benefit in sham-operated animals. We demonstrated that delayed cyclosporin treatment afforded neurorestoration in three complementary models of PD including the Thy1-α-synuclein transgenic mouse, a novel AAV-α-synuclein mouse model, and the MPTP mouse model. We then explored the mechanisms for this benefit of cyclosporin and found it was mediated by both cell-autonomous mechanisms and non-cell autonomous mechanisms.ConclusionThis study provides compelling evidence in favor for the use of immunosuppression in all grafted PD patients receiving cell replacement therapy, regardless of the immunological mismatch between donor and host cells, and also suggests that cyclosporine treatment itself may act as a disease-modifying therapy in all PD patients.


Schizophrenia Bulletin | 2018

12.3 SYSTEM XC- AS A NOVEL MODULATOR OF CORTICOSTRIATAL NEUROTRANSMISSION

Eduard Bentea; Cynthia Moore; Agnès Villers; Madeline J. Churchill; Rebecca L. Hood; Lauren Deneyer; Lise Verbruggen; Giulia Albertini; Hideyo Sato; Laurence Ris; Charles K. Meshul; Ann Massie

Abstract Background System xc- is a plasma membrane amino acid antiporter, of mainly glial origin, that couples the import of cystine with the export of glutamate. System xc- (specific subunit xCT) contributes substantially to ambient extracellular glutamate levels in various regions of the brain, including the striatum and hippocampus. Despite the fact that system xc- is highly expressed in the brain and is a proposed therapeutic target for various neurological disorders, its function under physiological conditions in the central nervous system remains poorly understood. By acting as a source of glial extrasynaptic glutamate, system xc- might modulate synaptic transmission as a mechanism of neuro-glial communication. Previous electrophysiological findings indicate that system xc- delivered glutamate can inhibit excitatory synaptic neurotransmission in the corticoaccumbens pathway and at hippocampal CA3-CA1 synapses. To gain further insight into the proposed function of system xc- as modulator of synaptic transmission, we here focus on corticostriatal synapses. Methods Single section electron microscopy was carried out on VGLUT1-pre-embed and glutamate immunogold post-embed labeled slices of the dorsolateral striatum of xCT+/+ and xCT-/- mice. Various parameters related to the pre- and post-synaptic compartments were integrated on the obtained electron micrographs, including glutamate immunogold density in the presynaptic terminal and spine, area of the terminal and spine, measures of the postsynaptic density (PSD) (length, area, thickness, and maximum thickness), percentage of PSDs showing perforations, and width of the synaptic cleft. Electrophysiological measures of corticostriatal transmission were obtained by recording the amplitude of field excitatory postsynaptic potentials (fEPSPs) after stimulation of corticostriatal fibers. Finally, grooming behavior was compared between xCT-/- and xCT+/+ littermates. Results Genetic deletion of xCT led to depletion of glutamate immunogold labeling from corticostriatal terminals and their corresponding dendritic spines. Absence of xCT did not, however, affect the morphology of corticostriatal synapses, as evaluated by the area of the terminals and spines, size of the PSD, and width of the synaptic cleft. Similarly, no changes could be observed in the density of VGLUT1-positive synapses, indicating normal cortical innervation and spine density. Electrophysiological recordings revealed decreased amplitude of fEPSPs in xCT-/- mice after stimulation of corticostriatal fibers. Preliminary investigations revealed that this reduced response can be rescued by restoring physiological levels of glutamate to xCT-/- slices. Changes in corticostriatal transmission were not reflected in aberrant grooming behavior in xCT-/- mice; we could not observe any difference in the total grooming duration, the number of grooming bouts, the average bout duration or the latency to onset to grooming between xCT-/- and xCT+/+ mice. Discussion Contrary to available evidence at hippocampal and corticoaccumbens pathways, our findings indicate a positive effect of system xc- on basal synaptic transmission at corticostriatal synapses. The decreased response we observed after stimulation of corticostriatal fibers in xCT-/- mice was accompanied by depletion of glutamate immunogold labeling from corticostriatal terminals, suggesting a possible defect in presynaptic glutamate handling. Given the strong decrease (70%) in extracellular glutamate levels previously reported in this strain of mice, we hypothesize that the decreased presynaptic glutamate labeling in xCT-/- mice is related to a loss of extracellular glutamate needed to supply terminals for proper excitatory transmission. This hypothesis is supported by our preliminary results showing increased responses in xCT-/- slices after restoring physiological levels of glutamate. Together, our findings shed new light on the role of system xc- in controlling synaptic transmission, and suggest that it may play an important role in supplying presynaptic terminals with glutamate as an alternative mechanism to the glutamate-glutamine cycle. As a novel modulator of corticostriatal transmission, system xc- may be of interest as a possible therapeutic target for disorders with a corticostriatal component, such as schizophrenia or obsessive-compulsive disorder.

Collaboration


Dive into the Madeline J. Churchill's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ann Massie

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Eduard Bentea

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Niculin J. Herz

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lauren Deneyer

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Lise Verbruggen

Vrije Universiteit Brussel

View shared research outputs
Researchain Logo
Decentralizing Knowledge