Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cynthia Vied is active.

Publication


Featured researches published by Cynthia Vied.


Developmental Cell | 2012

Regulation of Stem Cells by Intersecting Gradients of Long-Range Niche Signals

Cynthia Vied; Amy Reilein; Natania S. Field; Daniel Kalderon

We have used Drosophila ovarian follicle stem cells (FSCs) to study how stem cells are regulated by external signals and draw three main conclusions. First, the spatial definition of supportive niche positions for FSCs depends on gradients of Hh and JAK-STAT pathway ligands, which emanate from opposite, distant sites. FSC position may be further refined by a preference for low-level Wnt signaling. Second, hyperactivity of supportive signaling pathways can compensate for the absence of the otherwise essential adhesion molecule, DE-cadherin, suggesting a close regulatory connection between niche adhesion and niche signals. Third, FSC behavior is determined largely by summing the inputs of multiple signaling pathways of unequal potencies. Altogether, our findings indicate that a stem cell niche need not be defined by short-range signals and invariant cell contacts; rather, for FSCs, the intersection of gradients of long-range niche signals regulates the longevity, position, number, and competitive behavior of stem cells.


Development | 2009

Hedgehog-stimulated stem cells depend on non-canonical activity of the Notch co-activator Mastermind.

Cynthia Vied; Daniel Kalderon

Normal self-renewal of follicle stem cells (FSCs) in the Drosophila ovary requires Hedgehog (Hh) signaling. Excess Hh signaling, induced by loss of patched (ptc), causes cell-autonomous duplication of FSCs. We have used a genetic screen to identify Mastermind (Mam), the Notch pathway transcriptional co-activator, as a rare dose-dependent modifier of aberrant FSC expansion induced by excess Hh. Complete loss of Mam activity severely compromises the persistence of both normal and ptc mutant FSCs, but does not affect the maintenance of ovarian germline stem cells. Thus, Mam, like Hh, is a crucial stem cell factor that acts selectively on FSCs in the ovary. Surprisingly, other Notch pathway components, including Notch itself, are not similarly required for FSC maintenance. Furthermore, excess Notch pathway activity alone accelerates FSC loss and cannot ameliorate the more severe defects of mam mutant FSCs. This suggests an unconventional role for Mam in FSCs that is independent of Notch signaling. Loss of Mam reduces the expression of a Hh pathway reporter in FSCs but not in wing discs, suggesting that Mam might enhance Hh signaling specifically in stem cells of the Drosophila ovary.


Developmental Biology | 2003

Antizyme is a target of sex-lethal in the drosophila germline and appears to act downstream of hedgehog to regulate sex-lethal and cyclin B

Cynthia Vied; Naomi Halachmi; Adi Salzberg; Jamila I. Horabin

The sex determination master switch, Sex-lethal, has been shown to regulate the mitosis of early germ cells in Drosophila melanogaster. Sex-lethal is an RNA binding protein that regulates splicing and translation of specific targets in the soma, but the germline targets are unknown. In an experiment aimed at identifying targets of Sex-lethal in early germ cells, the RNA encoded by gutfeeling, the Drosophila homolog of Ornithine Decarboxylase Antizyme, was isolated. gutfeeling interacts genetically with Sex-lethal. It is not only a target of Sex-lethal, but also appears to regulate the nuclear entry and overall levels of Sex-lethal in early germ cells. This regulation of Sex-lethal by gutfeeling appears to occur downstream of the Hedgehog signal. We also show that Hedgehog, Gutfeeling, and Sex-lethal function to regulate Cyclin B, providing a link between Sex-lethal and mitosis.


Development | 2003

A positive role for Patched in Hedgehog signaling revealed by the intracellular trafficking of Sex-lethal, the Drosophila sex determination master switch

Jamila I. Horabin; Sabrina Walthall; Cynthia Vied; Michelle Moses

The sex determination master switch, Sex-lethal (Sxl), controls sexual development as a splicing and translational regulator. Hedgehog (Hh) is a secreted protein that specifies cell fate during development. We show that Sxl is in a complex that contains all of the known Hh cytoplasmic components, including Cubitus interruptus (Ci) the only known target of Hh signaling. Hh promotes the entry of Sxl into the nucleus in the wing disc. In the anterior compartment, the Hh receptor Patched (Ptc) is required for this effect, revealing Ptc as a positive effector of Hh. Some of the downstream components of the Hh signaling pathway also alter the rate of Sxl nuclear entry. Mutations in Suppressor of Fused or Fused with altered ability to anchor Ci are also impaired in anchoring Sxl in the cytoplasm. The levels, and consequently, the ability of Sxl to translationally repress downstream targets in the sex determination pathway, can also be adversely affected by mutations in Hh signaling genes. Conversely, overexpression of Sxl in the domain that Hh patterns negatively affects wing patterning. These data suggest that the Hh pathway impacts on the sex determination process and vice versa and that the pathway may serve more functions than the regulation of Ci.


G3: Genes, Genomes, Genetics | 2016

An Examination of Dynamic Gene Expression Changes in the Mouse Brain During Pregnancy and the Postpartum Period

Surjyendu Ray; Ruei-Ying Tzeng; Lisa M. DiCarlo; Joseph L. Bundy; Cynthia Vied; Gary S. Tyson; Richard S. Nowakowski; Michelle N. Arbeitman

The developmental transition to motherhood requires gene expression changes that alter the brain to drive the female to perform maternal behaviors. We broadly examined the global transcriptional response in the mouse maternal brain, by examining four brain regions: hypothalamus, hippocampus, neocortex, and cerebellum, in virgin females, two pregnancy time points, and three postpartum time points. We find that overall there are hundreds of differentially expressed genes, but each brain region and time point shows a unique molecular signature, with only 49 genes differentially expressed in all four regions. Interestingly, a set of “early-response genes” is repressed in all brain regions during pregnancy and postpartum stages. Several genes previously implicated in underlying postpartum depression change expression. This study serves as an atlas of gene expression changes in the maternal brain, with the results demonstrating that pregnancy, parturition, and postpartum maternal experience substantially impact diverse brain regions.


Frontiers in Neuroscience | 2014

A multi-resource data integration approach: identification of candidate genes regulating cell proliferation during neocortical development

Cynthia Vied; Florian Freudenberg; Yuting Wang; Alexandre A.S.F. Raposo; David Feng; Richard S. Nowakowski

Neurons of the mammalian neocortex are produced by proliferating cells located in the ventricular zone (VZ) lining the lateral ventricles. This is a complex and sequential process, requiring precise control of cell cycle progression, fate commitment and differentiation. We have analyzed publicly available databases from mouse and human to identify candidate genes that are potentially involved in regulating early neocortical development and neurogenesis. We used a mouse in situ hybridization dataset (The Allen Institute for Brain Science) to identify 13 genes (Cdon, Celsr1, Dbi, E2f5, Eomes, Hmgn2, Neurog2, Notch1, Pcnt, Sox3, Ssrp1, Tead2, Tgif2) with high correlation of expression in the proliferating cells of the VZ of the neocortex at early stages of development (E15.5). We generated a similar human brain network using microarray and RNA-seq data (BrainSpan Atlas) and identified 407 genes with high expression in the developing human VZ and subventricular zone (SVZ) at 8–9 post-conception weeks. Seven of the human genes were also present in the mouse VZ network. The human and mouse networks were extended using available genetic and proteomic datasets through GeneMANIA. A gene ontology search of the mouse and human networks indicated that many of the genes are involved in the cell cycle, DNA replication, mitosis and transcriptional regulation. The reported involvement of Cdon, Celsr1, Dbi, Eomes, Neurog2, Notch1, Pcnt, Sox3, Tead2, and Tgif2 in neural development or diseases resulting from the disruption of neurogenesis validates these candidate genes. Taken together, our knowledge-based discovery method has validated the involvement of many genes already known to be involved in neocortical development and extended the potential number of genes by 100s, many of which are involved in functions related to cell proliferation but others of which are potential candidates for involvement in the regulation of neocortical development.


The Journal of Comparative Neurology | 2016

Transcriptomic analysis of the hippocampus from six inbred strains of mice suggests a basis for sex-specific susceptibility and severity of neurological disorders

Cynthia Vied; Surjyendu Ray; Crystal-Dawn Badger; Joseph L. Bundy; Michelle N. Arbeitman; Richard S. Nowakowski

Identifying sex differences in gene expression within the brain is critical for determining why multiple neurological and behavioral disorders differentially affect males and females. Several disorders are more common or severe in males (e.g., autism and schizophrenia) or in females (e.g., Alzheimers disease and depression). We analyzed transcriptomic data from the mouse hippocampus of six inbred strains (129S1/SvImJ, A/J, C57BL/6J, DBA/1J, DBA/2J, and PWD/Ph) to provide a perspective on differences between male and female gene expression. Our data show that 1) gene expression differences in males vs. females varies substantially across the strains, 2) only a few genes are differentially expressed across all of the strains (termed core genes), and 3) >2,600 genes differ in the individual strain comparisons (termed noncore genes). We found that DBA/2J uniquely has a substantial majority (89%) of differentially expressed genes (DEGs) that are more highly expressed in females than in males (female‐biased); 129/SvImJ has a majority (69%) of DEGs that are more highly expressed in males. To gain insight into the function of the DEGs, we examined gene ontology and pathway and phenotype enrichment and found significant enrichment in phenotypes related to abnormal nervous system morphology and physiology, among others. In addition, several pathways are enriched significantly, including Alzheimers disease (AD), with 32 genes implicated in AD, eight of which are male‐biased. Three of the male‐biased genes have been implicated in a neuroprotective role in AD. Our transcriptomic data provide new insight into the possible genetic bases for sex‐specific susceptibility and severity of brain disorders. J. Comp. Neurol. 524:2696–2710, 2016.


PLOS ONE | 2015

Nucleosome Repositioning: A Novel Mechanism for Nicotine- and Cocaine-Induced Epigenetic Changes.

Amber N. Brown; Cynthia Vied; Jonathan H. Dennis; Pradeep G. Bhide

Drugs of abuse modify behavior by altering gene expression in the brain. Gene expression can be regulated by changes in DNA methylation as well as by histone modifications, which alter chromatin structure, DNA compaction and DNA accessibility. In order to better understand the molecular mechanisms directing drug-induced changes in chromatin structure, we examined DNA-nucleosome interactions within promoter regions of 858 genes in human neuroblastoma cells (SH-SY5Y) exposed to nicotine or cocaine. Widespread, drug- and time-resolved repositioning of nucleosomes was identified at the transcription start site and promoter region of multiple genes. Nicotine and cocaine produced unique and shared changes in terms of the numbers and types of genes affected, as well as repositioning of nucleosomes at sites which could increase or decrease the probability of gene expression based on DNA accessibility. Half of the drug-induced nucleosome positions approximated a theoretical model of nucleosome occupancy based on physical and chemical characteristics of the DNA sequence, whereas the basal or drug naïve positions were generally DNA sequence independent. Thus we suggest that nucleosome repositioning represents an initial dynamic genome-wide alteration of the transcriptional landscape preceding more selective downstream transcriptional reprogramming, which ultimately characterizes the cell- and tissue-specific responses to drugs of abuse.


BMC Genomics | 2017

Sex differences in the molecular signature of the developing mouse hippocampus

Joseph L. Bundy; Cynthia Vied; Richard S. Nowakowski

BackgroundA variety of neurological disorders, including Alzheimer’s disease, Parkinson’s disease, major depressive disorder, dyslexia and autism, are differentially prevalent between females and males. To better understand the possible molecular basis for the sex-biased nature of neurological disorders, we used a developmental series of female and male mice at 1, 2, and 4 months of age to assess both mRNA and protein in the hippocampus with RNA-sequencing and mass-spectrometry, respectively.ResultsThe transcriptomic analysis identifies 2699 genes that are differentially expressed between animals of different ages. The bulk of these differentially expressed genes are changed in both sexes at one or more ages, but a total of 198 transcripts are differentially expressed between females and males at one or more ages. The number of transcripts that are differentially expressed between females and males is greater in adult animals than in younger animals. Additionally, we identify 69 transcripts that show complex and sex-specific patterns of temporal regulation through postnatal development, 8 of which are heat-shock proteins. We also find a modest correlation between levels of mRNA and protein in the mouse hippocampus (Rho = 0.53).ConclusionThis study adds to the substantial body of evidence for transcriptomic regulation in the hippocampus during postnatal development. Additionally, this analysis reveals sex differences in the transcriptome of the developing mouse hippocampus, and further clarifies the need to include both female and male mice in longitudinal studies involving molecular changes in the hippocampus.


The Journal of Comparative Neurology | 2017

The stability of the transcriptome during the estrous cycle in four regions of the mouse brain

Lisa M. DiCarlo; Cynthia Vied; Richard S. Nowakowski

We analyzed the transcriptome of the C57BL/6J mouse hypothalamus, hippocampus, neocortex, and cerebellum to determine estrous cycle‐specific changes in these four brain regions. We found almost 16,000 genes are present in one or more of the brain areas but only 210 genes, ∼1.3%, are significantly changed as a result of the estrous cycle. The hippocampus has the largest number of differentially expressed genes (DEGs) (82), followed by the neocortex (76), hypothalamus (63), and cerebellum (26). Most of these DEGs (186/210) are differentially expressed in only one of the four brain regions. A key finding is the unique expression pattern of growth hormone (Gh) and prolactin (Prl). Gh and Prl are the only DEGs to be expressed during only one stage of the estrous cycle (metestrus). To gain insight into the function of the DEGs, we examined gene ontology and phenotype enrichment and found significant enrichment for genes associated with myelination, hormone stimulus, and abnormal hormone levels. Additionally, 61 of the 210 DEGs are known to change in response to estrogen in the brain. 50 of the 210 genes differentially expressed as a result of the estrous cycle are related to myelin and oligodendrocytes and 12 of the 63 DEGs in the hypothalamus are oligodendrocyte‐ and myelin‐specific genes. This transcriptomic analysis reveals that gene expression in the female mouse brain is remarkably stable during the estrous cycle and demonstrates that the genes that do fluctuate are functionally related.

Collaboration


Dive into the Cynthia Vied's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Surjyendu Ray

Florida State University

View shared research outputs
Top Co-Authors

Avatar

Adi Salzberg

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Naomi Halachmi

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Amber N. Brown

Florida State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge