Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michelle N. Arbeitman is active.

Publication


Featured researches published by Michelle N. Arbeitman.


Cell | 2000

Molecular Chaperones Activate the Drosophila Ecdysone Receptor, an RXR Heterodimer

Michelle N. Arbeitman

The steroid hormone 20-hydroxyecdysone coordinates the stages of Drosophila development by activating a nuclear receptor heterodimer consisting of the ecdysone receptor, EcR, and the Drosophila RXR receptor, USP. We show that EcR/USP DNA binding activity requires activation by a chaperone heterocomplex like that required for activation of the vertebrate steroid receptors, but not previously shown to be required for activation of RXR heterodimers. Six proteins normally present in the chaperone complex were individually purified and shown to be sufficient for this activation. We also show that two of the six (Hsp90 and Hsc70) are required in vivo for ecdysone receptor activity, and that EcR is the primary target of the chaperone complex.


Development | 2004

A genomic analysis of Drosophila somatic sexual differentiation and its regulation.

Michelle N. Arbeitman; Alice A. Fleming; Mark L. Siegal; Brian Null; Bruce S. Baker

In virtually all animals, males and females are morphologically, physiologically and behaviorally distinct. Using cDNA microarrays representing one-third of Drosophila genes to identify genes expressed sex-differentially in somatic tissues, we performed an expression analysis on adult males and females that: (1) were wild type; (2) lacked a germline; or (3) were mutant for sex-determination regulatory genes. Statistical analysis identified 63 genes sex-differentially expressed in the soma, 20 of which have been confirmed by RNA blots thus far. In situ hybridization experiments with 11 of these genes showed they were sex-differentially expressed only in internal genital organs. The nature of the products these genes encode provides insight into the molecular physiology of these reproductive tissues. Analysis of the regulation of these genes revealed that their adult expression patterns are specified by the sex hierarchy during development, and that doublesex probably functions in diverse ways to set their activities.


PLOS Biology | 2011

Evolution of Sex-Specific Traits through Changes in HOX-Dependent doublesex Expression

Kohtaro Tanaka; Olga Barmina; Laura E. Sanders; Michelle N. Arbeitman; Artyom Kopp

Analysis in Drosophila suggests that evolutionary changes in the spatial regulation of the transcription factor doublesex play a key role in the origin, diversification, and loss of sex-specific structures.


Developmental Biology | 2008

Doublesex establishes sexual dimorphism in the Drosophila central nervous system in an isoform-dependent manner by directing cell number

Laura E. Sanders; Michelle N. Arbeitman

doublesex (dsx) encodes sex-specific transcription factors (DSX(F) in females and DSX(M) in males) that act at the bottom of the Drosophila somatic sex determination hierarchy. dsx, which is conserved among diverse taxa, is responsible for directing all aspects of Drosophila somatic sexual differentiation outside the nervous system. The role of dsx in the nervous system remainsminimally understood. Here, the mechanisms by which DSX acts to establish dimorphism in the central nervous system were examined. This study shows that the number of DSX-expressing cells in the central nervous system is sexually dimorphic during both pupal and adult stages. Additionally, the number of DSX-expressing cells depends on both the amount of DSX and the isoform present. One cluster of DSX-expressing neurons in the ventral nerve cord undergoes female-specific cell death that is DSX(F)-dependent. Another DSX-expressing cluster in the posterior brain undergoes more cell divisions in males than in females. Additionally, early in development, DSX(M) is present in a portion of the neural circuitry in which the male-specific product of fruitless (fru) is produced, in a region that has been shown to be critical for sex-specific behaviors. This study demonstrates that DSX(M) and FRU(M) expression patterns are established independent of each other in the regions of the central nervous system examined. In addition to the known role of dsx in establishing sexual dimorphism outside the central nervous system, the results demonstrate that DSX establishes sex-specific differences in neural circuitry by regulating the number of neurons using distinct mechanisms.


PLOS ONE | 2012

A Versatile Method for Cell-Specific Profiling of Translated mRNAs in Drosophila

Amanda L. Thomas; Pei-Jung Lee; Justin E. Dalton; Krystle J. Nomie; Loredana Stoica; Mauro Costa-Mattioli; Peter L. Chang; Sergey V. Nuzhdin; Michelle N. Arbeitman; Herman A. Dierick

In Drosophila melanogaster few methods exist to perform rapid cell-type or tissue-specific expression profiling. A translating ribosome affinity purification (TRAP) method to profile actively translated mRNAs has been developed for use in a number of multicellular organisms although it has only been implemented to examine limited sets of cell- or tissue-types in these organisms. We have adapted the TRAP method for use in the versatile GAL4/UAS system of Drosophila allowing profiling of almost any tissue/cell-type with a single genetic cross. We created transgenic strains expressing a GFP-tagged ribosomal protein, RpL10A, under the control of the UAS promoter to perform cell-type specific translatome profiling. The GFP::RpL10A fusion protein incorporates efficiently into ribosomes and polysomes. Polysome affinity purification strongly enriches mRNAs from expected genes in the targeted tissues with sufficient sensitivity to analyze expression in small cell populations. This method can be used to determine the unique translatome profiles in different cell-types under varied physiological, pharmacological and pathological conditions.


BMC Genomics | 2011

Somatic sex-specific transcriptome differences in Drosophila revealed by whole transcriptome sequencing

Peter L. Chang; Joseph P. Dunham; Sergey V. Nuzhdin; Michelle N. Arbeitman

BackgroundUnderstanding animal development and physiology at a molecular-biological level has been advanced by the ability to determine at high resolution the repertoire of mRNA molecules by whole transcriptome resequencing. This includes the ability to detect and quantify rare abundance transcripts and isoform-specific mRNA variants produced from a gene.The sex hierarchy consists of a pre-mRNA splicing cascade that directs the production of sex-specific transcription factors that specify nearly all sexual dimorphism. We have used deep RNA sequencing to gain insight into how the Drosophila sex hierarchy generates somatic sex differences, by examining gene and transcript isoform expression differences between the sexes in adult head tissues.ResultsHere we find 1,381 genes that differ in overall expression levels and 1,370 isoform-specific transcripts that differ between males and females. Additionally, we find 512 genes not regulated downstream of transformer that are significantly more highly expressed in males than females. These 512 genes are enriched on the × chromosome and reside adjacent to dosage compensation complex entry sites, which taken together suggests that their residence on the × chromosome might be sufficient to confer male-biased expression. There are no transcription unit structural features, from a set of features, that are robustly significantly different in the genes with significant sex differences in the ratio of isoform-specific transcripts, as compared to random isoform-specific transcripts, suggesting that there is no single molecular mechanism that generates isoform-specific transcript differences between the sexes, even though the sex hierarchy is known to include three pre-mRNA splicing factors.ConclusionsWe identify thousands of genes that show sex-specific differences in overall gene expression levels, and identify hundreds of additional genes that have differences in the abundance of isoform-specific transcripts. No transcription unit structural feature was robustly enriched in the sex-differentially expressed transcript isoforms. Additionally, we found that many genes with male-biased expression were enriched on the × chromosome and reside adjacent to dosage compensation entry sites, suggesting that differences in sex chromosome composition contributes to dimorphism in gene expression. Taken together, this study provides new insight into the molecular underpinnings of sexual differentiation.


Current Biology | 2009

Ecdysone Receptor Acts in fruitless- Expressing Neurons to Mediate Drosophila Courtship Behaviors

Justin E. Dalton; Matthew S. Lebo; Laura E. Sanders; Fengzhu Sun; Michelle N. Arbeitman

In Drosophila melanogaster, fruitless (fru) encodes male-specific transcription factors (FRU(M); encoded by fru P1) required for courtship behaviors (reviewed in). However, downstream effectors of FRU(M) throughout development are largely unknown. During metamorphosis the nervous system is remodeled for adult function, the timing of which is coordinated by the steroid hormone 20-hydroxyecdysone (ecdysone) through the ecdysone receptor, a heterodimer of the nuclear receptors EcR (isoforms are EcR-A, EcR-B1, or EcR-B2) and Ultraspiracle (USP) (reviewed in). Here, we show that genes identified as regulated downstream of FRU(M) during metamorphosis are significantly overrepresented with genes known to be regulated in response to ecdysone or EcR. FRU(M) and EcR isoforms are coexpressed in neurons in the CNS during metamorphosis in an isoform-specific manner. Reduction of EcR-A levels in fru P1-expressing neurons of males caused a significant increase in male-male courtship activity and significant reduction in size of two antennal lobe glomeruli. Additional genes were identified that are regulated downstream of EcR-A in fru P1-expressing neurons. Thus, EcR-A is required in fru P1-expressing neurons for wild-type male courtship behaviors and the establishment of male-specific neuronal architecture.


Journal of Biology | 2009

The genetics of gender and life span

John Tower; Michelle N. Arbeitman

Several possible and potentially overlapping genetic mechanisms have been suggested to explain differences in life span between males and females. Two recent papers in BMC Evolutionary Biology on the effects of inbreeding provide additional insight into the genetic architecture underlying life span differences between genders in two different insects.


BMC Genomics | 2009

Somatic, germline and sex hierarchy regulated gene expression during Drosophila metamorphosis

Matthew S. Lebo; Laura E. Sanders; Fengzhu Sun; Michelle N. Arbeitman

BackgroundDrosophila melanogaster undergoes a complete metamorphosis, during which time the larval male and female forms transition into sexually dimorphic, reproductive adult forms. To understand this complex morphogenetic process at a molecular-genetic level, whole genome microarray analyses were performed.ResultsThe temporal gene expression patterns during metamorphosis were determined for all predicted genes, in both somatic and germline tissues of males and females separately. Temporal changes in transcript abundance for genes of known functions were found to correlate with known developmental processes that occur during metamorphosis. We find that large numbers of genes are sex-differentially expressed in both male and female germline tissues, and relatively few are sex-differentially expressed in somatic tissues. The majority of genes with somatic, sex-differential expression were found to be expressed in a stage-specific manner, suggesting that they mediate discrete developmental events. The Sex-lethal paralog, CG3056, displays somatic, male-biased expression at several time points in metamorphosis. Gene expression downstream of the somatic, sex determination genes transformer and doublesex (dsx) was examined in two-day old pupae, which allowed for the identification of genes regulated as a consequence of the sex determination hierarchy. These include the homeotic gene abdominal A, which is more highly expressed in females as compared to males, as a consequence of dsx. For most genes regulated downstream of dsx during pupal development, the mode of regulation is distinct from that observed for the well-studied direct targets of DSX, Yolk protein 1 and 2.ConclusionThe data and analyses presented here provide a comprehensive assessment of gene expression during metamorphosis in each sex, in both somatic and germline tissues. Many of the genes that underlie critical developmental processes during metamorphosis, including sex-specific processes, have been identified. These results provide a framework for further functional studies on the regulation of sex-specific development.


Journal of the Royal Society Interface | 2012

Three-dimensional tracking and behaviour monitoring of multiple fruit flies

Reza Ardekani; Anurag Biyani; Justin E. Dalton; Julia B. Saltz; Michelle N. Arbeitman; John Tower; Sergey V. Nuzhdin; Simon Tavaré

The increasing interest in the investigation of social behaviours of a group of animals has heightened the need for developing tools that provide robust quantitative data. Drosophila melanogaster has emerged as an attractive model for behavioural analysis; however, there are still limited ways to monitor fly behaviour in a quantitative manner. To study social behaviour of a group of flies, acquiring the position of each individual over time is crucial. There are several studies that have tried to solve this problem and make this data acquisition automated. However, none of these studies has addressed the problem of keeping track of flies for a long period of time in three-dimensional space. Recently, we have developed an approach that enables us to detect and keep track of multiple flies in a three-dimensional arena for a long period of time, using multiple synchronized and calibrated cameras. After detecting flies in each view, correspondence between views is established using a novel approach we call the ‘sequential Hungarian algorithm’. Subsequently, the three-dimensional positions of flies in space are reconstructed. We use the Hungarian algorithm and Kalman filter together for data association and tracking. We evaluated rigorously the systems performance for tracking and behaviour detection in multiple experiments, using from one to seven flies. Overall, this system presents a powerful new method for studying complex social interactions in a three-dimensional environment.

Collaboration


Dive into the Michelle N. Arbeitman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sergey V. Nuzhdin

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Laura E. Sanders

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Artyom Kopp

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ari Winbush

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fengzhu Sun

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

John Tower

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge