Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cyril C. Y. Yip is active.

Publication


Featured researches published by Cyril C. Y. Yip.


Journal of Clinical Microbiology | 2007

Clinical Features and Complete Genome Characterization of a Distinct Human Rhinovirus (HRV) Genetic Cluster, Probably Representing a Previously Undetected HRV Species, HRV-C, Associated with Acute Respiratory Illness in Children

Susanna K. P. Lau; Cyril C. Y. Yip; Hoi-Wah Tsoi; Rodney A. Lee; Lok-Yee So; Yu-Lung Lau; Kwok-Hung Chan; Patrick C. Y. Woo; Kwok-Yung Yuen

ABSTRACT Although human rhinoviruses (HRVs) are common causes of respiratory illness, their molecular epidemiology has been poorly investigated. Despite the recent findings of new HRV genotypes, their clinical disease spectrum and phylogenetic positions were not fully understood. In this study, 203 prospectively collected nasopharyngeal aspirates (NPAs), negative for common respiratory viruses (83 were human bocavirus [HBoV] positive and 120 HBoV negative), from hospitalized children during a 1-year period were subjected to reverse transcription-PCR for HRV. HRV was detected in 14 NPAs positive and 12 NPAs negative for HBoV. Upon VP4 gene analysis, 5 of these 26 HRV strains were found to belong to HRV-A while 21 belonged to a genetic clade probably representing a previously undetected HRV species, HRV-C, that is phylogenetically distinct from the two known HRV species, HRV-A and HRV-B. The VP4 sequences of these HRV-C strains were closely related to the newly identified HRV strains from the United States and Australia. Febrile wheeze or asthma was the most common presentation (76%) of HRV-C infection, which peaked in fall and winter. Complete genome sequencing of three HRV-C strains revealed that HRV-C represents an additional HRV species, with features distinct from HRV-A and HRV-B. Analysis of VP1 of HRV-C revealed major deletions in regions important for neutralization in other HRVs, which may be signs of a distinct species, while within-clade amino acid variation in potentially antigenic regions may indicate the existence of different serotypes among HRV-C strains. A newly identified HRV species, HRV-C, is circulating worldwide and is an important cause of febrile wheeze and asthmatic exacerbations in children requiring hospitalization.


Journal of Clinical Microbiology | 2006

Coronavirus HKU1 and Other Coronavirus Infections in Hong Kong

Susanna K. P. Lau; Patrick C. Y. Woo; Cyril C. Y. Yip; Herman Tse; Hoi-Wah Tsoi; Vincent C. C. Cheng; Paul P. Lee; Bone S. F. Tang; Chris H. Y. Cheung; Rodney A. Lee; Lok-Yee So; Yu-Lung Lau; Kwok-Hung Chan; Kwok-Yung Yuen

ABSTRACT We have recently described the discovery of a novel coronavirus, coronavirus HKU1 (CoV-HKU1), associated with community-acquired pneumonia. However, the clinical spectrum of disease and the epidemiology of CoV-HKU1 infections in relation to infections with other respiratory viruses are unknown. In this 12-month prospective study, 4,181 nasopharyngeal aspirates from patients with acute respiratory tract infections were subjected to reverse transcription-PCRs specific for CoV-HKU1 and human coronaviruses NL63 (HCoV-NL63), OC43 (HCoV-OC43), and 229E (HCoV-229E). Coronaviruses were detected in 87 (2.1%) patients, with 13 (0.3%) positive for CoV-HKU1, 17 (0.4%) positive for HCoV-NL63, 53 (1.3%) positive for HCoV-OC43, and 4 (0.1%) positive for HCoV-229E. Of the 13 patients with CoV-HKU1 infections, 11 were children and 8 had underlying diseases. Similar to the case for other coronaviruses, upper respiratory infection was the most common presentation of CoV-HKU1 infections, although pneumonia, acute bronchiolitis, and asthmatic exacerbation also occurred. Despite a shorter duration of fever (mean, 1.7 days) and no difference in maximum temperature in children with CoV-HKU1 infections compared to patients with most other respiratory virus infections, a high incidence of febrile seizures (50%) was noted, which was significantly higher than those for HCoV-OC43 (14%), adenovirus (9%), human parainfluenza virus 1 (0%), and respiratory syncytial virus (8%) infections. CoV-HKU1 and HCoV-OC43 infections peaked in winter, although cases of the former also occurred in spring to early summer. This is in contrast to HCoV-NL63 infections, which mainly occurred in early summer and autumn but were absent in winter. Two genotypes of CoV-HKU1 cocirculated during the study period. Continuous studies over a longer period are warranted to ascertain the seasonal variation and relative importance of the different coronaviruses. Similar studies in other countries are required to better determine the epidemiology and genetic diversity of CoV-HKU1.


The Journal of Infectious Diseases | 2007

Clinical and Molecular Epidemiology of Human Bocavirus in Respiratory and Fecal Samples from Children in Hong Kong

Susanna K. P. Lau; Cyril C. Y. Yip; Tak-Lun Que; Rodney A. Lee; Rex K.H. Au-Yeung; Boping Zhou; Lok-Yee So; Yu-Lung Lau; Kwok-Hung Chan; Patrick C. Y. Woo; Kwok-Yung Yuen

Abstract Background. Human bocavirus (HBoV) is a recently discovered parvovirus associated with respiratory tract infections in children. We conducted the first systematic prospective clinical and molecular study using nasopharyngeal aspirates (NPAs) and fecal samples. Methods. NPAs negative for influenza virus, parainfluenza virus, respiratory syncytial virus, adenovirus, and coronavirus and fecal samples from patients with acute gastroenteritis were included. On the basis of results from a pilot study using 400 NPAs from all age groups, a prospective 12-month study was conducted to detect HBoV in 1200 NPAs and 1435 fecal samples from patients <18 years old by polymerase chain reaction. The complete genome sequences of HBoVs from 12 NPAs and 12 fecal samples were determined. Results. Of the 400 NPAs collected in the pilot study, 20 (5.0%) were found to contain HBoV, all from children <5 years old. In the subsequent prospective study of pediatric patients, HBoV was detected in 83 (6.9%) of 1200 NPAs. Upper and lower respiratory tract infections were equally common. HBoV was detected in 30 (2.1%) of 1435 fecal samples. Fever and watery diarrhea were the most common symptoms. The seasonality of HBoV in NPAs and fecal samples was similar. Codetection with other pathogens occurred in 33% and 56% of NPAs and fecal samples, respectively, from patients with HBoV infection. Genomes of HBoVs from NPAs and fecal samples displayed minimal sequence variations. Conclusions. HBoV was detected in fecal specimens in children with acute gastroenteritis. A single lineage of HBoV was associated with both respiratory tract and enteric infections.


Journal of Virology | 2006

Comparative Analysis of 22 Coronavirus HKU1 Genomes Reveals a Novel Genotype and Evidence of Natural Recombination in Coronavirus HKU1

Patrick C. Y. Woo; Susanna K. P. Lau; Cyril C. Y. Yip; Yi Huang; Hoi-Wah Tsoi; Kwok-Hung Chan; Kwok-Yung Yuen

ABSTRACT We sequenced and compared the complete genomes of 22 strains of coronavirus HKU1 (CoV HKU1) obtained from nasopharyngeal aspirates of patients with respiratory tract infections over a 2-year period. Phylogenetic analysis of 24 putative proteins and polypeptides showed that the 22 CoV HKU1 strains fell into three clusters (genotype A, 13 strains; genotype B, 3 strains and genotype C, 6 strains). However, different phylogenetic relationships among the three clusters were observed in different regions of their genomes. From nsp4 to nsp6, the genotype A strains were clustered with the genotype B strains. For nsp7 and nsp8 and from nsp10 to nsp16, the genotype A strains were clustered with the genotype C strains. From hemagglutinin esterase (HE) to nucleocapsid (N), the genotype B strains were clustered closely with the genotype C strains. Bootscan analysis showed possible recombination between genotypes B and C from nucleotide positions 11500 to 13000, corresponding to the nsp6-nsp7 junction, giving rise to genotype A, and between genotypes A and B from nucleotide positions 21500 to 22500, corresponding to the nsp16-HE junction, giving rise to genotype C. Multiple alignments further narrowed the sites of crossover to a 143-bp region between nucleotide positions 11750 and 11892 and a 29-bp region between nucleotide positions 21502 and 21530. Genome analysis also revealed various numbers of tandem copies of a perfect 30-base acidic tandem repeat (ATR) which encodes NDDEDVVTGD and various numbers and sequences of imperfect repeats in the N terminus of nsp3 inside the acidic domain upstream of papain-like protease 1 among the 22 genomes. All 10 CoV HKU1 strains with incomplete imperfect repeats (1.4 and 4.4) belonged to genotype A. The present study represents the first evidence for natural recombination in coronavirus associated with human infection. Analysis of a single gene is not sufficient for the genotyping of CoV HKU1 strains but requires amplification and sequencing of at least two gene loci, one from nsp10 to nsp16 (e.g., pol or helicase) and another from HE to N (e.g., spike or N). Further studies will delineate whether the ATR is useful for the molecular typing of CoV HKU1.


Journal of Infection | 2016

Zika fever and congenital Zika syndrome: An unexpected emerging arboviral disease

Jasper Fuk-Woo Chan; Garnet K. Y. Choi; Cyril C. Y. Yip; Vincent C. C. Cheng; Kwok-Yung Yuen

Summary Unlike its mosquito-borne relatives, such as dengue, West Nile, and Japanese encephalitis viruses, which can cause severe human diseases, Zika virus (ZIKV) has emerged from obscurity by its association with a suspected “congenital Zika syndrome”, while causing asymptomatic or mild exanthematous febrile infections which are dengue- or rubella-like in infected individuals. Despite having been discovered in Uganda for almost 60 years, <20 human cases were reported before 2007. The massive epidemics in the Pacific islands associated with the ZIKV Asian lineage in 2007 and 2013 were followed by explosive outbreaks in Latin America in 2015. Although increased mosquito breeding associated with the El Niño effect superimposed on global warming is suspected, genetic changes in its RNA virus genome may have led to better adaptation to mosquitoes, other animal reservoirs, and human. We reviewed the epidemiology, clinical manifestation, virology, pathogenesis, laboratory diagnosis, management, and prevention of this emerging infection. Laboratory diagnosis can be confounded by cross-reactivity with other circulating flaviviruses. Besides mosquito bite and transplacental transmission, the risk of other potential routes of transmission by transfusion, transplantation, sexual activity, breastfeeding, respiratory droplet, and animal bite is discussed. Epidemic control requires adequate clearance of mosquito breeding grounds, personal protection against mosquito bite, and hopefully a safe and effective vaccine.


The Journal of Infectious Diseases | 2009

Clinical and Molecular Epidemiology of Human Rhinovirus C in Children and Adults in Hong Kong Reveals a Possible Distinct Human Rhinovirus C Subgroup

Susanna K. P. Lau; Cyril C. Y. Yip; Ada W.C. Lin; Rodney A. Lee; Lok-Yee So; Yu-Lung Lau; Kwok-Hung Chan; Patrick C. Y. Woo; Kwok-Yung Yuen

Abstract BackgroundA novel human rhinovirus (HRV) species, HRV-C, was recently discovered, but its clinical features and epidemiology, compared with HRV-A and HRV-B, remains poorly understood, especially in adults MethodsOne thousand two hundred nasopharyngeal aspirate samples obtained from hospitalized children and adults during a 1-year period were subject to reverse-transcriptase polymerase chain reaction to detect HRV. The clinical and molecular epidemiology of the 3 HRV species was analyzed ResultsHRVs were detected in 178 (29.7%) of 600 nasopharyngeal aspirate samples from children and 42 (7%) of 600 nasopharyngeal aspirate samples from adults. HRV-A was most prevalent (n=111), followed by HRV-C (n=91) and HRV-B (n=18). Although upper respiratory tract infection was the most common presentation in children, 8 (62%) of the 13 adults with HRV-C infection had pneumonia, compared with 6 (27%) of the 22 adults with HRV-A infection (P<.05). Wheezing episodes were also more common among individuals with HRV-C (37%) and HRV-A (20%) infection than among those with HRV-B (0%) infection (P<.05). Clinical and molecular data analysis revealed HRV-C as a frequent cause of community and institutionalized outbreaks. A diverse set of HRV-C genotypes was circulating throughout the year, among which a potential distinct subgroup of strains was observed ConclusionHRV-C is associated with pneumonia in adults and outbreaks of respiratory infections requiring hospitalization. A potential novel HRV-C subgroup was identified


Emerging Health Threats Journal | 2013

Human enterovirus 71 epidemics: what’s next?

Cyril C. Y. Yip; Susanna K. P. Lau; Patrick C. Y. Woo; Kwok-Yung Yuen

Human enterovirus 71 (EV71) epidemics have affected various countries in the past 40 years. EV71 commonly causes hand, foot and mouth disease (HFMD) in children, but can result in neurological and cardiorespiratory complications in severe cases. Genotypic changes of EV71 have been observed in different places over time, with the emergence of novel genotypes or subgenotypes giving rise to serious outbreaks. Since the late 1990s, intra- and inter-typic recombination events in EV71 have been increasingly reported in the Asia-Pacific region. In particular, ‘double-recombinant’ EV71 strains belonging to a novel genotype D have been predominant in mainland China and Hong Kong over the last decade, though co-circulating with a minority of other EV71 subgenotypes and coxsackie A viruses. Continuous surveillance and genome studies are important to detect potential novel mutants or recombinants in the near future. Rapid and sensitive molecular detection of EV71 is of paramount importance in anticipating and combating EV71 outbreaks.


Archives of Virology | 2010

Emergence of enterovirus 71 "double-recombinant" strains belonging to a novel genotype D originating from southern China: first evidence for combination of intratypic and intertypic recombination events in EV71.

Cyril C. Y. Yip; Susanna K. P. Lau; Boping Zhou; Ming-Xia Zhang; Hoi-Wah Tsoi; Kwok-Hung Chan; Xinchun Chen; Patrick C. Y. Woo; Kwok-Yung Yuen

Hand–foot–mouth disease due to enterovirus 71 (EV71) and coxsackievirus A16 (CA16) has recently caused large outbreaks in mainland China in 2008. We performed complete genome sequencing on two EV71 (SZ/HK08-5 and SZ/HK08-6) and two CA16 (SZ/HK08-3 and SZ/HK08-7) strains from patients in Shenzhen, China. Phylogenetic, similarity plot and bootscan analyses revealed recombination between EV71 genotypes B and C at the 2A–2B junction, and between EV71 genotype B and CA16 strain G-10 in the 3C region for EV71 strains. A similar phenomenon was also found upon further gene sequencing with other EV71 strains. Recombination between CA16 strain G-10 and EV71 genotype A at the 2A–2B junction was also observed for CA16 strains. The present “double-recombinant” EV71 strains circulating in China and other EV71 subgenotype “C4” strains represent an additional genotype, D. CA16 strains should also be classified into two genotypes. This represents the first evidence for a combination of intratypic and intertypic recombination in EV71 strains.


Journal of Virology | 2011

Molecular Epidemiology of Human Coronavirus OC43 Reveals Evolution of Different Genotypes over Time and Recent Emergence of a Novel Genotype due to Natural Recombination

Susanna K. P. Lau; Paul P. Lee; Alan K. L. Tsang; Cyril C. Y. Yip; Herman Tse; Rodney A. Lee; Lok-Yee So; Yu-Lung Lau; Kwok-Hung Chan; Patrick C. Y. Woo; Kwok-Yung Yuen

ABSTRACT Although human coronavirus OC43-OC43 (HCoV-OC43) is the coronavirus most commonly associated with human infections, little is known about its molecular epidemiology and evolution. We conducted a molecular epidemiology study to investigate different genotypes and potential recombination in HCoV-OC43. Twenty-nine HCoV-OC43 strains from nasopharyngeal aspirates, collected from 2004 to 2011, were subjected to RNA-dependent RNA polymerase (RdRp), spike, and nucleocapsid gene analysis. Phylogenetic analysis showed at least three distinct clusters of HCoV-OC43, although 10 unusual strains displayed incongruent phylogenetic positions between RdRp and spike genes. This suggested the presence of four HCoV-OC43 genotypes (A to D), with genotype D most likely arising from recombination. The complete genome sequencing of two genotype C and D strains and bootscan analysis showed recombination events between genotypes B and C in the generation of genotype D. Of the 29 strains, none belonged to the more ancient genotype A, 5 from 2004 belonged to genotype B, 15 from 2004 to 2006 belonged to genotype C, and 1 from 2004 and all 8 from 2008 to 2011 belonged to the recombinant genotype D. Molecular clock analysis using spike and nucleocapsid genes dated the most recent common ancestor of all genotypes to the 1950s, genotype B and C to the 1980s, genotype B to the 1990s, and genotype C to the late 1990s to early 2000s, while the recombinant genotype D strains were detected as early as 2004. This represents the first study to describe natural recombination in HCoV-OC43 and the evolution of different genotypes over time, leading to the emergence of novel genotype D, which is associated with pneumonia in our elderly population.


Journal of Virology | 2011

Complete genome analysis of three novel picornaviruses from diverse bat species

Susanna K. P. Lau; Patrick C. Y. Woo; Kenneth K. Y. Lai; Yi Huang; Cyril C. Y. Yip; Chung-Tong Shek; Paul P. Lee; Carol S. F. Lam; Kwok-Hung Chan; Kwok-Yung Yuen

ABSTRACT Although bats are important reservoirs of diverse viruses that can cause human epidemics, little is known about the presence of picornaviruses in these flying mammals. Among 1,108 bats of 18 species studied, three novel picornaviruses (groups 1, 2, and 3) were identified from alimentary specimens of 12 bats from five species and four genera. Two complete genomes, each from the three picornaviruses, were sequenced. Phylogenetic analysis showed that they fell into three distinct clusters in the Picornaviridae family, with low homologies to known picornaviruses, especially in leader and 2A proteins. Moreover, group 1 and 2 viruses are more closely related to each other than to group 3 viruses, which exhibit genome features distinct from those of the former two virus groups. In particular, the group 3 virus genome contains the shortest leader protein within Picornaviridae, a putative type I internal ribosome entry site (IRES) in the 5′-untranslated region instead of the type IV IRES found in group 1 and 2 viruses, one instead of two GXCG motifs in 2A, an L→V substitution in the DDLXQ motif in 2C helicase, and a conserved GXH motif in 3C protease. Group 1 and 2 viruses are unique among picornaviruses in having AMH instead of the GXH motif in 3Cpro. These findings suggest that the three picornaviruses belong to two novel genera in the Picornaviridae family. This report describes the discovery and complete genome analysis of three picornaviruses in bats, and their presence in diverse bat genera/species suggests the ability to cross the species barrier.

Collaboration


Dive into the Cyril C. Y. Yip's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susanna K. P. Lau

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kwok-Hung Chan

Li Ka Shing Faculty of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi Huang

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rodney A. Lee

Pamela Youde Nethersole Eastern Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge