Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cyril Savin is active.

Publication


Featured researches published by Cyril Savin.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Parallel independent evolution of pathogenicity within the genus Yersinia.

Sandra Reuter; Thomas Richard Connor; Lars Barquist; Danielle Walker; Theresa Feltwell; Simon R. Harris; Maria Fookes; Miquette Hall; Nicola K. Petty; Thilo M. Fuchs; Jukka Corander; Muriel Dufour; Tamara Ringwood; Cyril Savin; Christiane Bouchier; Liliane Martin; Minna Miettinen; Mikhail Shubin; Julia M. Riehm; Riikka Laukkanen-Ninios; Leila M. Sihvonen; Anja Siitonen; Mikael Skurnik; Juliana Pfrimer Falcão; Hiroshi Fukushima; Holger C. Scholz; Michael B. Prentice; Brendan W. Wren; Julian Parkhill; Elisabeth Carniel

Significance Our past understanding of pathogen evolution has been fragmented because of tendencies to study human clinical isolates. To understand the evolutionary trends of pathogenic bacteria though, we need the context of their nonpathogenic relatives. Our unique and detailed dataset allows description of the parallel evolution of two key human pathogens: the causative agents of plague and Yersinia diarrhea. The analysis reveals an emerging pattern where few virulence-related functions are found in all pathogenic lineages, representing key “foothold” moments that mark the emergence of these pathogens. Functional gene loss and metabolic streamlining are equally complementing the evolution of Yersinia across the pathogenic spectrum. The genus Yersinia has been used as a model system to study pathogen evolution. Using whole-genome sequencing of all Yersinia species, we delineate the gene complement of the whole genus and define patterns of virulence evolution. Multiple distinct ecological specializations appear to have split pathogenic strains from environmental, nonpathogenic lineages. This split demonstrates that contrary to hypotheses that all pathogenic Yersinia species share a recent common pathogenic ancestor, they have evolved independently but followed parallel evolutionary paths in acquiring the same virulence determinants as well as becoming progressively more limited metabolically. Shared virulence determinants are limited to the virulence plasmid pYV and the attachment invasion locus ail. These acquisitions, together with genomic variations in metabolic pathways, have resulted in the parallel emergence of related pathogens displaying an increasingly specialized lifestyle with a spectrum of virulence potential, an emerging theme in the evolution of other important human pathogens.


PLOS ONE | 2012

Evaluation of a single procedure allowing the isolation of enteropathogenic Yersinia along with other bacterial enteropathogens from human stools.

Cyril Savin; Alexandre Leclercq; Elisabeth Carniel

Enteropathogenic Yersinia are among the most frequent agents of human diarrhea in temperate and cold countries. However, the incidence of yersiniosis is largely underestimated because of the peculiar growth characteristics of pathogenic Yersinia, which make their isolation from poly-contaminated samples difficult. The use of specific procedures for Yersinia isolation is required, but is expensive and time consuming, and therefore is not systematically performed in clinical pathology laboratories. A means to circumvent this problem would be to use a single procedure for the isolation of all bacterial enteropathogens. Since the Statens Serum Institut enteric medium (SSI) has been reported to allow the growth at 37°C of most Gram-negative bacteria, including Yersinia, our study aimed at evaluating its performances for Yersinia isolation, as compared to the commonly used Yersinia-specific semi-selective Cefsulodin-Irgasan-Novobiocin medium (CIN) incubated at 28°C. Our results show that Yersinia pseudotuberculosis growth was strongly inhibited on SSI at 37°C, and therefore that this medium is not suitable for the isolation of this species. All Yersinia enterocolitica strains tested grew on SSI, while some non-pathogenic Yersinia species were inhibited. The morphology of Y. enterocolitica colonies on SSI allowed their differentiation from various other Gram-negative bacteria commonly isolated from stool samples. However, in artificially contaminated human stools, the recovery of Y. enterocolitica colonies on SSI at 37°C was difficult and was 3 logs less sensitive than on CIN at 28°C. Therefore, despite its limitations, the use of a specific procedure (CIN incubated at 28°C) is still required for an efficient isolation of enteropathogenic Yersinia from stools.


Journal of Clinical Microbiology | 2015

Use of Whole-Genus Genome Sequence Data To Develop a Multilocus Sequence Typing Tool That Accurately Identifies Yersinia Isolates to the Species and Subspecies Levels

Miquette Hall; Marie A. Chattaway; Sandra Reuter; Cyril Savin; Eckhard Strauch; Elisabeth Carniel; Thomas Richard Connor; Inge Van Damme; Lakshani Rajakaruna; Dunstan Rajendram; Claire Jenkins; Nicholas R. Thomson; Alan McNally

ABSTRACT The genus Yersinia is a large and diverse bacterial genus consisting of human-pathogenic species, a fish-pathogenic species, and a large number of environmental species. Recently, the phylogenetic and population structure of the entire genus was elucidated through the genome sequence data of 241 strains encompassing every known species in the genus. Here we report the mining of this enormous data set to create a multilocus sequence typing-based scheme that can identify Yersinia strains to the species level to a level of resolution equal to that for whole-genome sequencing. Our assay is designed to be able to accurately subtype the important human-pathogenic species Yersinia enterocolitica to whole-genome resolution levels. We also report the validation of the scheme on 386 strains from reference laboratory collections across Europe. We propose that the scheme is an important molecular typing system to allow accurate and reproducible identification of Yersinia isolates to the species level, a process often inconsistent in nonspecialist laboratories. Additionally, our assay is the most phylogenetically informative typing scheme available for Y. enterocolitica.


Journal of Clinical Microbiology | 2009

Characterization of Atypical Isolates of Yersinia intermedia and Definition of Two New Biotypes

Liliane Martin; Alexandre Leclercq; Cyril Savin; Elisabeth Carniel

ABSTRACT The species Yersinia intermedia is a member of the genus Yersinia which belongs to the Enterobacteriaceae family. This species is divided into eight biotypes, according to Brenners biotyping scheme. This scheme relies on five tests (utilization of Simmons citrate and acid production from d-melibiose, d-raffinose, α-methyl-d-glucoside [αMG], and l-rhamnose). The collection of the French Yersinia Reference Laboratory (Institut Pasteur, Paris, France) contained 44 strains that were originally identified as Y. intermedia but whose characteristics did not fit into the biotyping scheme. These 44 strains were separated into two biochemical groups: variant 1 (positive for acid production from l-rhamnose and αMG and positive for Simmons citrate utlization) and variant 2 (positive for acid production from l-rhamnose and αMG). These atypical strains could correspond to new biotypes of Y. intermedia, to Y. frederiksenii strains having the atypical property of fermenting αMG, or to new Yersinia species. These strains did not exhibit growth or phenotypic properties different from those of Y. intermedia and Y. frederiksenii and did not harbor any of the virulence traits usually found in pathogenic species. DNA-DNA hybridizations performed between one strain each of variants 1 and 2 and the Y. intermedia and Y. frederiksenii type strains demonstrated that these variants do belong to the Y. intermedia species. We thus propose that Brenners biotyping scheme be updated by adding two new biotypes: 9 (for variant 1) and 10 (for variant 2) to the species Y. intermedia.


Journal of Clinical Microbiology | 2015

Fast and sensitive detection of enteropathogenic Yersinia by immunoassays

Jérôme Laporte; Cyril Savin; Patricia Lamourette; Karine Devilliers; Hervé Volland; Elisabeth Carniel; Christophe Creminon; Stéphanie Simon

ABSTRACT Yersinia enterocolitica and Yersinia pseudotuberculosis, the two Yersinia species that are enteropathogenic for humans, are distributed worldwide and frequently cause diarrhea in inhabitants of temperate and cold countries. Y. enterocolitica is a major cause of foodborne disease resulting from consumption of contaminated pork meat and is further associated with substantial economic cost. However, investigation of enteropathogenic Yersinia species is infrequently performed routinely in clinical laboratories because of their specific growth characteristics, which make difficult their isolation from stool samples. Moreover, current isolation procedures are time-consuming and expensive, thus leading to underestimates of the incidence of enteric yersiniosis, inappropriate prescriptions of antibiotic treatments, and unnecessary appendectomies. The main objective of the study was to develop fast, sensitive, specific, and easy-to-use immunoassays, useful for both human and veterinary diagnosis. Monoclonal antibodies (MAbs) directed against Y. enterocolitica bioserotypes 2/O:9 and 4/O:3 and Y. pseudotuberculosis serotypes I and III were produced. Pairs of MAbs were selected by testing their specificity and affinity for enteropathogenic Yersinia and other commonly found enterobacteria. Pairs of MAbs were selected to develop highly sensitive enzyme immunoassays (EIAs) and lateral flow immunoassays (LFIs or dipsticks) convenient for the purpose of rapid diagnosis. The limit of detection of the EIAs ranged from 3.2 × 103 CFU/ml to 8.8 × 104 CFU/ml for pathogenic serotypes I and III of Y. pseudotuberculosis and pathogenic bioserotypes 2/O:9 and 4/O:3 of Y. enterocolitica and for the LFIs ranged from 105 CFU/ml to 106 CFU/ml. A similar limit of detection was observed for artificially contaminated human feces.


Genome Announcements | 2013

Draft Genome Sequence of a Clinical Strain of Yersinia enterocolitica (IP10393) of Bioserotype 4/O:3 from France.

Cyril Savin; Lionel Frangeul; Laurence Ma; Christiane Bouchier; Ivan Moszer; Elisabeth Carniel

ABSTRACT We sequenced the genome of a clinical isolate of Yersinia enterocolitica (IP10393) from France. This strain belongs to bioserotype 4/O:3, which is the most common pathogenic subgroup worldwide. The draft genome has a size of 4,463,212 bp and a G+C content of 47.0%, and it is predicted to contain 4,181 coding sequences.


PLOS Neglected Tropical Diseases | 2017

The Asian house shrew Suncus murinus as a reservoir and source of human outbreaks of plague in Madagascar

Soanandrasana Rahelinirina; Minoarisoa Rajerison; Sandra Telfer; Cyril Savin; Elisabeth Carniel; Jean-Marc Duplantier

Identifying key reservoirs for zoonoses is crucial for understanding variation in incidence. Plague re-emerged in Mahajanga, Madagascar in the 1990s but there has been no confirmed case since 1999. Here we combine ecological and genetic data, from during and after the epidemics, with experimental infections to examine the role of the shrew Suncus murinus in the plague epidemiological cycle. The predominance of S. murinus captures during the epidemics, their carriage of the flea vector and their infection with Yersinia pestis suggest they played an important role in the maintenance and transmission of plague. S. murinus exhibit a high but variable resistance to experimental Y. pestis infections, providing evidence of its ability to act as a maintenance host. Genetic analyses of the strains isolated from various hosts were consistent with two partially-linked transmission cycles, with plague persisting within the S. murinus population, occasionally spilling over into the rat and human populations. The recent isolation from a rat in Mahajanga of a Y. pestis strain genetically close to shrew strains obtained during the epidemics reinforces this hypothesis and suggests circulation of plague continues. The observed decline in S. murinus and Xenopsylla cheopis since the epidemics appears to have decreased the frequency of spillover events to the more susceptible rats, which act as a source of infection for humans. Although this may explain the lack of confirmed human cases in recent years, the current circulation of plague within the city highlights the continuing health threat.


Journal of Clinical Microbiology | 2014

Typing and Clustering of Yersinia pseudotuberculosis Isolates by Restriction Fragment Length Polymorphism Analysis Using Insertion Sequences

E. Voskresenskaya; Cyril Savin; Alexandre Leclercq; Galina Tseneva; Elisabeth Carniel

ABSTRACT Yersinia pseudotuberculosis is an enteropathogen that has an animal reservoir and causes human infections, mostly in temperate and cold countries. Most of the methods previously used to subdivide Y. pseudotuberculosis were performed on small numbers of isolates from a specific geographical area. One aim of this study was to evaluate the typing efficiency of restriction fragment length polymorphism of insertion sequence hybridization patterns (IS-RFLP) compared to other typing methods, such as serotyping, ribotyping, and multilocus sequence typing (MLST), on the same set of 80 strains of Y. pseudotuberculosis of global origin. We found that IS100 was not adequate for IS-RFLP but that both IS285 and IS1541 efficiently subtyped Y. pseudotuberculosis. The discriminatory index (DI) of IS1541-RFLP (0.980) was superior to those of IS285-RFLP (0.939), ribotyping (0.944), MLST (0.861), and serotyping (0.857). The combination of the two IS (2IS-RFLP) further increased the DI to 0.998. Thus, IS-RFLP is a powerful tool for the molecular typing of Y. pseudotuberculosis and has the advantage of exhibiting well-resolved banding patterns that allow for a reliable comparison of strains of worldwide origin. The other aim of this study was to assess the clustering power of IS-RFLP. We found that 2IS-RFLP had a remarkable capacity to group strains with similar genotypic and phenotypic markers, thus identifying robust populations within Y. pseudotuberculosis. Our study thus demonstrates that 2IS- and even IS1541-RFLP alone might be valuable tools for the molecular typing of global isolates of Y. pseudotuberculosis and for the analysis of the population structure of this species.


new microbes and new infections | 2018

First isolation of Yersinia entomophaga in human urinary tract

A.-S. Le Guern; Cyril Savin; Sylvie Brémont; G. Payro; D. Bon; Elisabeth Carniel; Javier Pizarro-Cerdá

Yersinia entomophaga is an insect pathogen first isolated from larvae of Coleoptera in New Zealand in 2011. We report here the first isolation of Y. entomophaga from human urine. Using whole-genome sequencing, we confirmed the presence of specific chromosomal virulence genes and identified a plasmid harbouring a quinolone resistance gene.


Emerging microbes & infections | 2018

Isolation of a Yersinia enterocolitica biotype 1B strain in France, and evaluation of its genetic relatedness to other European and North American biotype 1B strains

Cyril Savin; Anne-Sophie Le Guern; Matthieu Lefranc; Sylvie Brémont; Elisabeth Carniel; Javier Pizarro-Cerdá

Yersinia enterocolitica, a member of the Enterobacteriaceae family, is a gastrointestinal pathogen. This species is transmitted via the fecal-oral route, usually through the consumption of contamin...

Collaboration


Dive into the Cyril Savin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miquette Hall

Nottingham Trent University

View shared research outputs
Top Co-Authors

Avatar

Nicholas R. Thomson

Wellcome Trust Sanger Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge