Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisabeth Carniel is active.

Publication


Featured researches published by Elisabeth Carniel.


EMBO Reports | 2001

Ecological fitness, genomic islands and bacterial pathogenicity. A Darwinian view of the evolution of microbes.

Jörg Hacker; Elisabeth Carniel

The compositions of bacterial genomes can be changed rapidly and dramatically through a variety of processes including horizontal gene transfer. This form of change is key to bacterial evolution, as it leads to ‘evolution in quantum leaps’. Horizontal gene transfer entails the incorporation of genetic elements transferred from another organism—perhaps in an earlier generation—directly into the genome, where they form ‘genomic islands’, i.e. blocks of DNA with signatures of mobile genetic elements. Genomic islands whose functions increase bacterial fitness, either directly or indirectly, have most likely been positively selected and can be termed ‘fitness islands’. Fitness islands can be divided into several subtypes: ‘ecological islands’ in environmental bacteria and ‘saprophytic islands’, ‘symbiosis islands’ or ‘pathogenicity islands’ (PAIs) in microorganisms that interact with living hosts. Here we discuss ways in which PAIs contribute to the pathogenic potency of bacteria, and the idea that genetic entities similar to genomic islands may also be present in the genomes of eukaryotes.


PLOS Medicine | 2008

Plague: Past, Present, and Future

Nils Chr. Stenseth; Bakyt Atshabar; Michael Begon; Steven R. Belmain; Eric Bertherat; Elisabeth Carniel; Kenneth L. Gage; Herwig Leirs; Lila Rahalison

The authors argue that plague should be taken much more seriously by the international health community.


Archive | 2010

Supplementary information to support : 'Yersinia pestis genome sequencing identifies patterns of global phylogenetic diversity'

Giovanna Morelli; Yajun Song; Camila J. Mazzoni; Mark Eppinger; Philippe Roumagnac; David M. Wagner; Mirjam Feldkamp; Barica Kusecek; Amy J. Vogler; Yanjun Li; Yujun Cui; Nicholas R. Thomson; Thibaut Jombart; Raphaël Leblois; Peter Lichtner; Lila Rahalison; Jeannine M. Petersen; Francois Balloux; Paul Keim; Thierry Wirth; Jacques Ravel; Ruifu Yang; Elisabeth Carniel; Mark Achtman

Pandemic infectious diseases have accompanied humans since their origins1, and have shaped the form of civilizations2. Of these, plague is possibly historically the most dramatic. We reconstructed historical patterns of plague transmission through sequence variation in 17 complete genome sequences and 933 single nucleotide polymorphisms (SNPs) within a global collection of 286 Yersinia pestis isolates. Y. pestis evolved in or near China, and has been transmitted via multiple epidemics that followed various routes, probably including transmissions to West Asia via the Silk Road and to Africa by Chinese marine voyages. In 1894, Y. pestis spread to India and radiated to diverse parts of the globe, leading to country-specific lineages that can be traced by lineage-specific SNPs. All 626 current isolates from the U.S.A. reflect one radiation and 82 isolates from Madagascar represent a second. Subsequent local microevolution of Y. pestis is marked by sequential, geographically-specific SNPs.Plague is a pandemic human invasive disease caused by the bacterial agent Yersinia pestis. We here report a comparison of 17 whole genomes of Y. pestis isolates from global sources. We also screened a global collection of 286 Y. pestis isolates for 933 SNPs using Sequenom MassArray SNP typing. We conducted phylogenetic analyses on this sequence variation dataset, assigned isolates to populations based on maximum parsimony and, from these results, made inferences regarding historical transmission routes. Our phylogenetic analysis suggests that Y. pestis evolved in or near China and spread through multiple radiations to Europe, South America, Africa and Southeast Asia, leading to country-specific lineages that can be traced by lineage-specific SNPs. All 626 current isolates from the United States reflect one radiation, and 82 isolates from Madagascar represent a second radiation. Subsequent local microevolution of Y. pestis is marked by sequential, geographically specific SNPs.


Fems Immunology and Medical Microbiology | 2003

A rapid and simple method for inactivating chromosomal genes in Yersinia

Anne Derbise; Biliana Lesic; Denis Dacheux; Jean Marc Ghigo; Elisabeth Carniel

A polymerase chain reaction (PCR)-based procedure without any cloning step was developed for a rapid mutagenesis/deletion of chromosomal target genes in Yersinia. For this purpose, a PCR fragment carrying an antibiotic resistance gene flanked by regions homologous to the target locus is electroporated into a recipient strain expressing the highly proficient homologous recombination system encoded by plasmid pKOBEG-sacB. Two PCR procedures were tested to generate an amplification product formed of an antibiotic resistance gene flanked by short (55 bp) or long (500 bp) homology extensions. Using this method, three chromosomal loci were successfully disrupted in Yersinia pseudotuberculosis. The use of this technique allows rapid and efficient large-scale mutagenesis of Yersinia target chromosomal genes.


PLOS Pathogens | 2010

Distinct clones of yersinia pestis caused the Black Death

Stephanie Haensch; Raffaella Bianucci; Michel Signoli; Minoarisoa Rajerison; Michael Schultz; Sacha Kacki; Marco Vermunt; Darlene A. Weston; Derek Hurst; Mark Achtman; Elisabeth Carniel; Barbara Bramanti

From AD 1347 to AD 1353, the Black Death killed tens of millions of people in Europe, leaving misery and devastation in its wake, with successive epidemics ravaging the continent until the 18th century. The etiology of this disease has remained highly controversial, ranging from claims based on genetics and the historical descriptions of symptoms that it was caused by Yersinia pestis to conclusions that it must have been caused by other pathogens. It has also been disputed whether plague had the same etiology in northern and southern Europe. Here we identified DNA and protein signatures specific for Y. pestis in human skeletons from mass graves in northern, central and southern Europe that were associated archaeologically with the Black Death and subsequent resurgences. We confirm that Y. pestis caused the Black Death and later epidemics on the entire European continent over the course of four centuries. Furthermore, on the basis of 17 single nucleotide polymorphisms plus the absence of a deletion in glpD gene, our aDNA results identified two previously unknown but related clades of Y. pestis associated with distinct medieval mass graves. These findings suggest that plague was imported to Europe on two or more occasions, each following a distinct route. These two clades are ancestral to modern isolates of Y. pestis biovars Orientalis and Medievalis. Our results clarify the etiology of the Black Death and provide a paradigm for a detailed historical reconstruction of the infection routes followed by this disease.


Microbes and Infection | 2001

The Yersinia high-pathogenicity island: an iron-uptake island.

Elisabeth Carniel

Highly pathogenic Yersinia carry a pathogenicity island termed high-pathogenicity island (HPI). The Yersinia HPI comprises genes involved in the synthesis of the siderophore yersiniabactin and can thus be regarded as an iron-uptake island. A unique characteristic of the HPI is its wide distribution among different enterobacteria such as Escherichia coli, Klebsiella, Citrobacter and Salmonella. Other types of iron-uptake systems are also carried by different pathogenicity islands in enterobacteria.


Molecular Microbiology | 1998

The high-pathogenicity island of Yersinia pseudotuberculosis can be inserted into any of the three chromosomal asn tRNA genes

Carmen Buchrieser; Roland Brosch; Sandrine Bach; Annie Guiyoule; Elisabeth Carniel

Pathogenicity islands (PAIs) have been identified in several bacterial species. A PAI called high‐pathogenicity island (HPI) and carrying genes involved in iron acquisition (yersiniabactin system) has been previously identified in Yersinia enterocolitica and Yersinia pestis. In this study, the HPI of the third species of Yersinia pathogenic for humans, Y. pseudotuberculosis, has been characterized. We demonstrate that the HPI of strain IP32637 has a physical and genetic map identical to that of Y. pestis. A gene homologous to the bacteriophage P4 integrase gene is located downstream of the asn tRNA locus that borders the HPI of strain IP32637. This int gene is at the same position on the HPI of all three pathogenic Yersinia species. However, in contrast to Y. pestis 6/69, the HPI of Y. pseudotuberculosis IP32637 is not invariably adjacent to the pigmentation segment and can be inserted at a distance ≥ 190 kb from this segment. Also, in contrast to Y. pestis and Y. enterocolitica, the HPI of Y. pseudotuberculosis IP32637 can precisely excise from the chromosome, and, strikingly, it can be found inserted in any of the three asn tRNA loci present on the chromosome of this species, one of which is adjacent to the pigmentation segment. The pigmentation segment, which is present in Y. pestis but not in Y. enterocolitica, is also present and well conserved in all strains of Y. pseudotuberculosis studied. In contrast, the presence and size of the HPIs vary depending on the serotype of the strain: an entire HPI is found in strains of serotypes I only, a HPI with a 9 kb truncation in its left‐hand part that carries the IS100 sequence and the psn and ybtE genes characterizes the strains of serotype III, and no HPI is found in strains of serotypes II, IV and V.


The Lancet | 2003

Development and testing of a rapid diagnostic test for bubonic and pneumonic plague

Suzanne Chanteau; Lila Rahalison; Lalao Ralafiarisoa; Jeanine Foulon; Mahery Ratsitorahina; Lala Ratsifasoamanana; Elisabeth Carniel; Farida Nato

BACKGROUND Plague is often fatal without prompt and appropriate treatment. It affects mainly poor and remote populations. Late diagnosis is one of the major causes of human death and spread of the disease, since it limits the effectiveness of control measures. We aimed to develop and assess a rapid diagnostic test (RDT) for plague. METHODS We developed a test that used monoclonal antibodies to the F1 antigen of Yersinia pestis. Sensitivity and specificity were assessed with a range of bacterial cultures and clinical samples, and compared with findings from available ELISA and bacteriological tests for plague. Samples from patients thought to have plague were tested with the RDT in the laboratory and by health workers in 26 pilot sites in Madagascar. FINDINGS The RDT detected concentrations of F1 antigen as low as 0.5 ng/mL in up to 15 min, and had a shelf life of 21 days at 60 degrees C. Its sensitivity and specificity were both 100%. RDT detected 41.6% and 31% more positive clinical specimens than did bacteriological methods and ELISA, respectively. The agreement rate between tests done at remote centres and in the laboratory was 89.8%. With the combination of bacteriological methods and F1 ELISA as reference standard, the positive and negative predictive values of the RDT were 90.6% and 86.7%, respectively. INTERPRETATION Our RDT is a specific, sensitive, and reliable test that can easily be done by health workers at the patients bedside, for the rapid diagnosis of pneumonic and bubonic plague. This test will be of key importance for the control of plague in endemic countries.


Infection and Immunity | 2009

Genetic Structure and Distribution of the Colibactin Genomic Island among Members of the Family Enterobacteriaceae

Johannes Putze; Claire Hennequin; Jean-Philippe Nougayrède; Wenlan Zhang; Stefan Homburg; Helge Karch; Marie-Agnès Bringer; Corinne Fayolle; Elisabeth Carniel; Wolfgang Rabsch; Tobias A. Oelschlaeger; Eric Oswald; Christiane Forestier; Jörg Hacker; Ulrich Dobrindt

ABSTRACT A genomic island encoding the biosynthesis and secretion pathway of putative hybrid nonribosomal peptide-polyketide colibactin has been recently described in Escherichia coli. Colibactin acts as a cyclomodulin and blocks the eukaryotic cell cycle. The origin and prevalence of the colibactin island among enterobacteria are unknown. We therefore screened 1,565 isolates of different genera and species related to the Enterobacteriaceae by PCR for the presence of this DNA element. The island was detected not only in E. coli but also in Klebsiella pneumoniae, Enterobacter aerogenes, and Citrobacter koseri isolates. It was highly conserved among these species and was always associated with the yersiniabactin determinant. Structural variations between individual strains were only observed in an intergenic region containing variable numbers of tandem repeats. In E. coli, the colibactin island was usually restricted to isolates of phylogenetic group B2 and inserted at the asnW tRNA locus. Interestingly, in K. pneumoniae, E. aerogenes, C. koseri, and three E. coli strains of phylogenetic group B1, the functional colibactin determinant was associated with a genetic element similar to the integrative and conjugative elements ICEEc1 and ICEKp1 and to several enterobacterial plasmids. Different asn tRNA genes served as chromosomal insertion sites of the ICE-associated colibactin determinant: asnU in the three E. coli strains of ECOR group B1, and different asn tRNA loci in K. pneumoniae. The detection of the colibactin genes associated with an ICE-like element in several enterobacteria provides new insights into the spread of this gene cluster and its putative mode of transfer. Our results shed light on the mechanisms of genetic exchange between members of the family Enterobacteriaceae.


Molecular Microbiology | 2006

Role of pathogenicity island-associated integrases in the genome plasticity of uropathogenic Escherichia coli strain 536.

Bianca Hochhut; Caroline Wilde; Gudrun Balling; Barbara Middendorf; Ulrich Dobrindt; Elzbieta Brzuszkiewicz; Gerhard Gottschalk; Elisabeth Carniel; Jörg Hacker

The genome of uropathogenic Escherichia coli isolate 536 contains five well‐characterized pathogenicity islands (PAIs) encoding key virulence factors of this strain. Except PAI IV536, the four other PAIs of strain 536 are flanked by direct repeats (DRs), carry intact integrase genes and are able to excise site‐specifically from the chromosome. Genome screening of strain 536 identified a sixth putative asnW‐associated PAI. Despite the presence of DRs and an intact integrase gene, excision of this island was not detected. To investigate the role of PAI‐encoded integrases for the recombination process the int genes of each unstable island of strain 536 were inactivated. For PAI I536 and PAI II536, their respective P4‐like integrase was required for their excision. PAI III536 carries two integrase genes, intA, encoding an SfX‐like integrase, and intB, coding for an integrase with weak similarity to P4‐like integrases. Only intB was required for site‐specific excision of this island. For PAI V536, excision could not be abolished after deleting its P4‐like integrase gene but additional deletion of the PAI II536‐specific integrase gene was required. Therefore, although all mediated by P4‐like integrases, the activity of the PAI excision machinery is most often restricted to its cognate island. This work also demonstrates for the first time the existence of a cross‐talk between integrases of different PAIs and shows that this cross‐talk is unidirectional.

Collaboration


Dive into the Elisabeth Carniel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge