Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cyril Seillet is active.

Publication


Featured researches published by Cyril Seillet.


Science | 2016

Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes

Laura K. Mackay; Martina Minnich; Natasja A. M. Kragten; Yang Liao; Benjamin Nota; Cyril Seillet; Ali Zaid; Kevin Man; Simon Preston; David Freestone; Asolina Braun; Erica Wynne-Jones; Felix M. Behr; Regina Stark; Daniel G. Pellicci; Dale I. Godfrey; Gabrielle T. Belz; Marc Pellegrini; Thomas Gebhardt; Meinrad Busslinger; Wei Shi; Francis R. Carbone; René A. W. van Lier; Axel Kallies; Klaas P. J. M. van Gisbergen

Transcription factors define tissue T cells The immune system fights microbial invaders by maintaining multiple lines of defense. For instance, specialized memory T cells [resident memory T cells (Trms)] colonize portals of pathogen entry, such as the skin, lung, and gut, to quickly halt reinfections. Mackay et al. now report that in mice, Trms as well as other tissue-dwelling lymphocyte populations such as natural killer cells share a common transcriptional program driven by the related transcription factors Hobit and Blimp1. Tissue residency and retention of lymphocytes require expression of Hobit and Blimp1, which, among other functions, suppress genes that promote tissue exit. Science, this issue p. 459 Tissue-dwelling lymphocyte populations share a common transcriptional signature. Tissue-resident memory T (Trm) cells permanently localize to portals of pathogen entry, where they provide immediate protection against reinfection. To enforce tissue retention, Trm cells up-regulate CD69 and down-regulate molecules associated with tissue egress; however, a Trm-specific transcriptional regulator has not been identified. Here, we show that the transcription factor Hobit is specifically up-regulated in Trm cells and, together with related Blimp1, mediates the development of Trm cells in skin, gut, liver, and kidney in mice. The Hobit-Blimp1 transcriptional module is also required for other populations of tissue-resident lymphocytes, including natural killer T (NKT) cells and liver-resident NK cells, all of which share a common transcriptional program. Our results identify Hobit and Blimp1 as central regulators of this universal program that instructs tissue retention in diverse tissue-resident lymphocyte populations.


Journal of Experimental Medicine | 2014

Nfil3 is required for the development of all innate lymphoid cell subsets

Cyril Seillet; Lucille C. Rankin; Joanna R. Groom; Lisa A. Mielke; Julie Tellier; Michaël Chopin; Nicholas D. Huntington; Gabrielle T. Belz; Sebastian Carotta

Loss of Nfil3 selectively reduces Peyer’s patch formation, impairing recruitment and distribution of lymphocytes and compromising immune responses to inflammatory and infectious agents.


Nature Immunology | 2016

Complementarity and redundancy of IL-22-producing innate lymphoid cells

Lucille C. Rankin; Mathilde J.H. Girard-Madoux; Cyril Seillet; Lisa A. Mielke; Yann M. Kerdiles; Elisabeth Wieduwild; Tracy Putoczki; Stanislas Mondot; Olivier Lantz; Dieter Demon; Anthony T. Papenfuss; Gordon K. Smyth; Mohamed Lamkanfi; Sebastian Carotta; Jean-Christophe Renauld; Wei Shi; Sabrina Carpentier; Tim Soos; Christopher Arendt; Sophie Ugolini; Nicholas D. Huntington; Gabrielle T. Belz; Eric Vivier

Intestinal T cells and group 3 innate lymphoid cells (ILC3 cells) control the composition of the microbiota and gut immune responses. Within the gut, ILC3 subsets coexist that either express or lack the natural cytoxicity receptor (NCR) NKp46. We identified here the transcriptional signature associated with the transcription factor T-bet–dependent differentiation of NCR− ILC3 cells into NCR+ ILC3 cells. Contrary to the prevailing view, we found by conditional deletion of the key ILC3 genes Stat3, Il22, Tbx21 and Mcl1 that NCR+ ILC3 cells were redundant for the control of mouse colonic infection with Citrobacter rodentium in the presence of T cells. However, NCR+ ILC3 cells were essential for cecal homeostasis. Our data show that interplay between intestinal ILC3 cells and adaptive lymphocytes results in robust complementary failsafe mechanisms that ensure gut homeostasis.


Journal of Immunology | 2014

Differential Requirement for Nfil3 during NK Cell Development

Cyril Seillet; Nicholas D. Huntington; Pradnya Gangatirkar; Elin Axelsson; Martina Minnich; Hugh J. M. Brady; Meinrad Busslinger; Mark J. Smyth; Gabrielle T. Belz; Sebastian Carotta

NK cells can be grouped into distinct subsets that are localized to different organs and exhibit a different capacity to secrete cytokines and mediate cytotoxicity. Despite these hallmarks that reflect tissue-specific specialization in NK cells, little is known about the factors that control the development of these distinct subsets. The basic leucine zipper transcription factor Nfil3 (E4bp4) is essential for bone marrow–derived NK cell development, but it is not clear whether Nfil3 is equally important for all NK cell subsets or how it induces NK lineage commitment. In this article, we show that Nfil3 is required for the formation of Eomes-expressing NK cells, including conventional medullary and thymic NK cells, whereas TRAIL+ Eomes− NK cells develop independently of Nfil3. Loss of Nfil3 during the development of bone marrow–derived NK cells resulted in reduced expression of Eomes and, conversely, restoration of Eomes expression in Nfil3−/− progenitors rescued NK cell development and maturation. Collectively, these findings demonstrate that Nfil3 drives the formation of mature NK cells by inducing Eomes expression and reveal the differential requirements of NK cell subsets for Nfil3.


Blood | 2013

CD8α+ DCs can be induced in the absence of transcription factors Id2, Nfil3, and Batf3

Cyril Seillet; Jacob T. Jackson; Kate A. Markey; Hugh J. M. Brady; Geoffrey R. Hill; Kelli P. A. MacDonald; Stephen L. Nutt; Gabrielle T. Belz

Antiviral immunity and cross-presentation is mediated constitutively through CD8α+ and CD103+ DCs. Development of these DC subsets is thought to require the transcription factors Irf8, Id2, Nfil3, and Batf3, although how this network is regulated is poorly defined. We addressed the nature of the differentiation blocks observed in the absence of these factors and found that although all 4 factors are required for CD103+ DC development, only Irf8 is essential for CD8α+ DCs. CD8α+ DCs emerged in the absence of Id2, Nfil3 and Batf3 in short-term bone marrow reconstitution. These “induced” CD8α+ DCs exhibit several hallmarks of classic CD8α+ DCs including the expression of CD24, Tlr3, Xcr1, Clec9A, and the capacity to cross-present soluble, cell-associated antigens and viral antigens even in the absence of Batf3. Collectively, these results uncover a previously undescribed pathway by which CD8α+ DCs emerge independent of Id2, Nfil3, and Batf3, but dependent on Irf8.


Nature Immunology | 2016

CIS is a potent checkpoint in NK cell–mediated tumor immunity

Rebecca B. Delconte; Tatiana B. Kolesnik; Laura F. Dagley; Jai Rautela; Wei Shi; Eva M. Putz; Kimberley Stannard; Jian Guo Zhang; Charis E. Teh; Matt Firth; Takashi Ushiki; Christopher E. Andoniou; Mariapia A. Degli-Esposti; Phillip P Sharp; C.E. Sanvitale; Giuseppe Infusini; Nicholas P. D. Liau; Edmond M. Linossi; Christopher J. Burns; Sebastian Carotta; Daniel Gray; Cyril Seillet; Dana S. Hutchinson; Gabrielle T. Belz; Andrew I. Webb; Warren S. Alexander; Shawn S.-C. Li; Alex N. Bullock; Jeffery J. Babon; Mark J. Smyth

The detection of aberrant cells by natural killer (NK) cells is controlled by the integration of signals from activating and inhibitory ligands and from cytokines such as IL-15. We identified cytokine-inducible SH2-containing protein (CIS, encoded by Cish) as a critical negative regulator of IL-15 signaling in NK cells. Cish was rapidly induced in response to IL-15, and deletion of Cish rendered NK cells hypersensitive to IL-15, as evidenced by enhanced proliferation, survival, IFN-γ production and cytotoxicity toward tumors. This was associated with increased JAK-STAT signaling in NK cells in which Cish was deleted. Correspondingly, CIS interacted with the tyrosine kinase JAK1, inhibiting its enzymatic activity and targeting JAK for proteasomal degradation. Cish−/− mice were resistant to melanoma, prostate and breast cancer metastasis in vivo, and this was intrinsic to NK cell activity. Our data uncover a potent intracellular checkpoint in NK cell–mediated tumor immunity and suggest possibilities for new cancer immunotherapies directed at blocking CIS function.


Journal of Experimental Medicine | 2013

Langerhans cells are generated by two distinct PU.1-dependent transcriptional networks

Michaël Chopin; Cyril Seillet; Stéphane Chevrier; Li Wu; Hongsheng Wang; Herbert C. Morse; Gabrielle T. Belz; Stephen L. Nutt

Langerhans cell homeostasis and differentiation depends on PU.1, the latter via regulation of TGF-β–dependent binding of PU.1 to the regulatory elements of RUNX3.


Immunity | 2016

The Helix-Loop-Helix Protein ID2 Governs NK Cell Fate by Tuning Their Sensitivity to Interleukin-15

Rebecca B. Delconte; Wei Shi; Priyanka Sathe; Takashi Ushiki; Cyril Seillet; Martina Minnich; Tatiana B. Kolesnik; Lucille C. Rankin; Lisa A. Mielke; Jian-Guo Zhang; Meinrad Busslinger; Mark J. Smyth; Dana S. Hutchinson; Stephen L. Nutt; Sandra E. Nicholson; Warren S. Alexander; Lynn M. Corcoran; Eric Vivier; Gabrielle T. Belz; Sebastian Carotta; Nicholas D. Huntington

The inhibitor of DNA binding 2 (Id2) is essential for natural killer (NK) cell development with its canonical role being to antagonize E-protein function and alternate lineage fate. Here we have identified a key role for Id2 in regulating interleukin-15 (IL-15) receptor signaling and homeostasis of NK cells by repressing multiple E-protein target genes including Socs3. Id2 deletion in mature NK cells was incompatible with their homeostasis due to impaired IL-15 receptor signaling and metabolic function and this could be rescued by strong IL-15 receptor stimulation or genetic ablation of Socs3. During NK cell maturation, we observed an inverse correlation between E-protein target genes and Id2. These results shift the current paradigm on the role of ID2, indicating that it is required not only to antagonize E-proteins during NK cell commitment, but constantly required to titrate E-protein activity to regulate NK cell fitness and responsiveness to IL-15.


Journal of Experimental Medicine | 2017

Androgen signaling negatively controls group 2 innate lymphoid cells

Sophie Laffont; Eve Blanquart; Magali Savignac; Claire Cénac; Gilles Laverny; Daniel Metzger; Jean-Philippe Girard; Gabrielle T. Belz; Lucette Pelletier; Cyril Seillet; Jean-Charles Guéry

Prevalence of asthma is higher in women than in men, but the mechanisms underlying this sex bias are unknown. Group 2 innate lymphoid cells (ILC2s) are key regulators of type 2 inflammatory responses. Here, we show that ILC2 development is greatly influenced by male sex hormones. Male mice have reduced numbers of ILC2 progenitors (ILC2Ps) and mature ILC2s in peripheral tissues compared with females. In consequence, males exhibit reduced susceptibility to allergic airway inflammation in response to environmental allergens and less severe IL-33–driven lung inflammation, correlating with an impaired expansion of lung ILC2s. Importantly, orchiectomy, but not ovariectomy, abolishes the sex differences in ILC2 development and restores IL-33–mediated lung inflammation. ILC2Ps express the androgen receptor (AR), and AR signaling inhibits their differentiation into mature ILC2s. Finally, we show that hematopoietic AR expression limits IL-33–driven lung inflammation through a cell-intrinsic inhibition of ILC2 expansion. Thus, androgens play a crucial protective role in type 2 airway inflammation by negatively regulating ILC2 homeostasis, thereby limiting their capacity to expand locally in response to IL-33.


Frontiers in Immunology | 2017

Estrogen Receptor-Dependent Regulation of Dendritic Cell Development and Function

Sophie Laffont; Cyril Seillet; Jean-Charles Guéry

Autoimmunity, infectious diseases and cancer affect women and men differently. Because they tend to develop more vigorous adaptive immune responses than men, women are less susceptible to some infectious diseases but also at higher risk of autoimmunity. The regulation of immune responses by sex-dependent factors probably involves several non-redundant mechanisms. A privileged area of study, however, concerns the role of sex steroid hormones in the biology of innate immune cells, especially dendritic cells (DCs). In recent years, our understanding of the lineage origin of DC populations has expanded, and the lineage-committing transcription factors shaping peripheral DC subsets have been identified. Both progenitor cells and mature DC subsets express estrogen receptors (ERs), which are ligand-dependent transcription factors. This suggests that estrogens may contribute to the reported sex differences in immunity by regulating DC biology. Here, we review the recent literature and highlight evidence that estrogen-dependent activation of ERα regulates the development or the functional responses of particular DC subsets. The in vitro model of GM-CSF-induced DC differentiation shows that CD11c+ CD11bint Ly6cneg cells depend on ERα activation by estrogen for their development, and for the acquisition of competence to activate naive CD4+ T lymphocytes and mount a robust pro-inflammatory cytokine response to CD40 stimulation. In this model, estrogen signaling in conjunction with GM-CSF is necessary to promote early interferon regulatory factor (Irf)-4 expression in macrophage-DC progenitors and their subsequent differentiation into IRF-4hi CD11c+ CD11bint Ly6cneg cells, closely related to the cDC2 subset. The Flt3L-induced model of DC differentiation in turn shows that ERα signaling promotes the development of conventional DC (cDC) and plasmacytoid DC (pDC) with higher capability of pro-inflammatory cytokine production in response to TLR stimulation. Likewise, cell-intrinsic ER signaling positively regulates the TLR-driven production of type I interferons (IFNs) in mouse pDCs in vivo. This effect of estrogens likely contributes to the greater proficiency of women’s pDCs than men’s as regards the production of type I IFNs elicited by TLR7 ligands. In summary, evidence is emerging in support of the notion that estrogen signaling regulates important aspects of cDC and pDC development and/or effector functions, in both mice and humans.

Collaboration


Dive into the Cyril Seillet's collaboration.

Top Co-Authors

Avatar

Gabrielle T. Belz

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Nicholas D. Huntington

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Lisa A. Mielke

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Sebastian Carotta

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Lucille C. Rankin

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Wei Shi

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Mark J. Smyth

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Stephen L. Nutt

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Eric Vivier

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Michaël Chopin

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge