Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D.A. Humphreys is active.

Publication


Featured researches published by D.A. Humphreys.


Nuclear Fusion | 2007

Chapter 3: MHD stability, operational limits and disruptions

T. C. Hender; J. Wesley; J. Bialek; Anders Bondeson; Allen H. Boozer; R.J. Buttery; A. M. Garofalo; T. P. Goodman; R. Granetz; Yuri Gribov; O. Gruber; M. Gryaznevich; G. Giruzzi; S. Günter; N. Hayashi; P. Helander; C. C. Hegna; D. Howell; D.A. Humphreys; G. Huysmans; A.W. Hyatt; A. Isayama; Stephen C. Jardin; Y. Kawano; A. G. Kellman; C. Kessel; H. R. Koslowski; R.J. La Haye; Enzo Lazzaro; Yueqiang Liu

Progress in the area of MHD stability and disruptions, since the publication of the 1999 ITER Physics Basis document (1999 Nucl. Fusion 39 2137-2664), is reviewed. Recent theoretical and experimental research has made important advances in both understanding and control of MHD stability in tokamak plasmas. Sawteeth are anticipated in the ITER baseline ELMy H-mode scenario, but the tools exist to avoid or control them through localized current drive or fast ion generation. Active control of other MHD instabilities will most likely be also required in ITER. Extrapolation from existing experiments indicates that stabilization of neoclassical tearing modes by highly localized feedback-controlled current drive should be possible in ITER. Resistive wall modes are a key issue for advanced scenarios, but again, existing experiments indicate that these modes can be stabilized by a combination of plasma rotation and direct feedback control with non-axisymmetric coils. Reduction of error fields is a requirement for avoiding non-rotating magnetic island formation and for maintaining plasma rotation to help stabilize resistive wall modes. Recent experiments have shown the feasibility of reducing error fields to an acceptable level by means of non-axisymmetric coils, possibly controlled by feedback. The MHD stability limits associated with advanced scenarios are becoming well understood theoretically, and can be extended by tailoring of the pressure and current density profiles as well as by other techniques mentioned here. There have been significant advances also in the control of disruptions, most notably by injection of massive quantities of gas, leading to reduced halo current fractions and a larger fraction of the total thermal and magnetic energy dissipated by radiation. These advances in disruption control are supported by the development of means to predict impending disruption, most notably using neural networks. In addition to these advances in means to control or ameliorate the consequences of MHD instabilities, there has been significant progress in improving physics understanding and modelling. This progress has been in areas including the mechanisms governing NTM growth and seeding, in understanding the damping controlling RWM stability and in modelling RWM feedback schemes. For disruptions there has been continued progress on the instability mechanisms that underlie various classes of disruption, on the detailed modelling of halo currents and forces and in refining predictions of quench rates and disruption power loads. Overall the studies reviewed in this chapter demonstrate that MHD instabilities can be controlled, avoided or ameliorated to the extent that they should not compromise ITER operation, though they will necessarily impose a range of constraints.


Nuclear Fusion | 1998

Real time equilibrium reconstruction for tokamak discharge control

J.R. Ferron; M.L. Walker; L. L. Lao; H.E. St. John; D.A. Humphreys; J.A. Leuer

A practical method for performing a tokamak equilibrium reconstruction in real time for arbitrary time varying discharge shapes and current profiles is described. An approximate solution to the Grad-Shafranov equilibrium relation is found which best fits the diagnostic measurements. Thus, a solution for the spatial distribution of poloidal flux and toroidal current density is available in real time that is consistent with plasma force balance, allowing accurate evaluation of parameters such as discharge shape and safety factor profile. The equilibrium solutions are produced at a rate sufficient for discharge control. This equilibrium reconstruction algorithm has been implemented on the digital plasma control system for the DIII-D tokamak. The first application of real time equilibrium reconstruction to discharge shape control is described.


Nuclear Fusion | 2009

Principal physics developments evaluated in the ITER design review

R.J. Hawryluk; D.J. Campbell; G. Janeschitz; P.R. Thomas; R. Albanese; R. Ambrosino; C. Bachmann; L. R. Baylor; M. Becoulet; I. Benfatto; J. Bialek; Allen H. Boozer; A. Brooks; R.V. Budny; T.A. Casper; M. Cavinato; J.-J. Cordier; V. Chuyanov; E. J. Doyle; T.E. Evans; G. Federici; M.E. Fenstermacher; H. Fujieda; K. Gál; A. M. Garofalo; L. Garzotti; D.A. Gates; Y. Gribov; P. Heitzenroeder; T. C. Hender

As part of the ITER Design Review and in response to the issues identified by the Science and Technology Advisory Committee, the ITER physics requirements were reviewed and as appropriate updated. The focus of this paper will be on recent work affecting the ITER design with special emphasis on topics affecting near-term procurement arrangements. This paper will describe results on: design sensitivity studies, poloidal field coil requirements, vertical stability, effect of toroidal field ripple on thermal confinement, material choice and heat load requirements for plasma-facing components, edge localized modes control, resistive wall mode control, disruptions and disruption mitigation.


Nuclear Fusion | 2011

Study on H-mode access at low density with lower hybrid current drive and lithium-wall coatings on the EAST superconducting tokamak

Guosheng Xu; B.N. Wan; J.G. Li; X.Z. Gong; Jiansheng Hu; Jiafang Shan; Hong Li; D.K. Mansfield; D.A. Humphreys; V. Naulin

The first high-confinement mode (H-mode) with type-III edge localized modes at an H factor of HIPB98(y,2) ∼ 1 has been obtained with about 1 MW lower hybrid wave power on the EAST superconducting tokamak. The first H-mode plasma appeared after wall conditioning by lithium (Li) evaporation before plasma breakdown and the real-time injection of fine Li powder into the plasma edge. The threshold power for H-mode access follows the international tokamak scaling even in the low density range and a threshold in density has been identified. With increasing accumulation of deposited Li the H-mode duration was gradually extended up to 3.6 s corresponding to ∼30 confinement times, limited only by currently attainable durations of the plasma current flat top. Finally, it was observed that neutral density near the lower X-point was progressively reduced by a factor of 4 with increasing Li accumulation, which is considered the main mechanism for the H-mode power threshold reduction by the Li wall coatings. (Some figures in this article are in colour only in the electronic version)


Plasma Physics and Controlled Fusion | 2008

Design and simulation of extremum-seeking open-loop optimal control of current profile in the DIII-D tokamak

Yongsheng Ou; Chao Xu; Eugenio Schuster; T.C. Luce; J.R. Ferron; M.L. Walker; D.A. Humphreys

In a magnetic fusion reactor, the achievement of a certain type of plasma current profiles, which are compatible with magnetohydrodynamic stability at high plasma pressure, is key to enable high fusion gain and non-inductive sustainment of the plasma current for steady-state operation. The approach taken toward establishing such plasma current profiles at the DIII-D tokamak is to create the desired profile during the plasma current ramp-up and early flattop phases. The evolution in time of the current profile is related to the evolution of the poloidal flux, which is modeled in normalized cylindrical coordinates using a partial differential equation usually referred to as the magnetic diffusion equation. The control problem is formulated as an open-loop, finite-time, optimal control problem for a nonlinear distributed parameter system, and is approached using extremum seeking. Simulation results, which demonstrate the accuracy of the considered model and the efficiency of the proposed controller, are presented.


Nuclear Fusion | 2009

Experimental vertical stability studies for ITER performance and design guidance

D.A. Humphreys; T.A. Casper; N.W. Eidietis; M. Ferrara; D.A. Gates; Ian H. Hutchinson; G.L. Jackson; E. Kolemen; J.A. Leuer; J.B. Lister; L.L. LoDestro; W.H. Meyer; L.D. Pearlstein; A. Portone; F. Sartori; M.L. Walker; A.S. Welander; S.M. Wolfe

United States Department of Energy (DE-FC02-04ER54698, DEAC52- 07NA27344, and DE-FG02-04ER54235)


Nuclear Fusion | 2005

Measurements of impurity and heat dynamics during noble gas jet-initiated fast plasma shutdown for disruption mitigation in DIII-D

E.M. Hollmann; T.C. Jernigan; M. Groth; D.G. Whyte; D.S. Gray; M. E. Austin; B.D. Bray; D.P. Brennan; N. H. Brooks; T.E. Evans; D.A. Humphreys; C.J. Lasnier; R.A. Moyer; A.G. McLean; P.B. Parks; V. Rozhansky; D.L. Rudakov; E. J. Strait; W.P. West

Impurity deposition and mixing during gas jet-initiated plasma shutdown is studied using a rapid ({approx}2 ms), massive ({approx}10{sup 22} particles) injection of neon or argon into stationary DIII-D H-mode discharges. Fast-gated camera images indicate that the bulk of the jet neutrals do not penetrate far into the plasma pedestal. Nevertheless, high ({approx}90%) thermal quench radiated power fractions are achieved; this appears to be facilitated through a combination of fast ion mixing and fast heat transport, both driven by large-scale MHD activity. Also, runaway electron suppression is achieved for sufficiently high gas jet pressures. These experiments suggest that massive gas injection could be viable for disruption mitigation in future tokamaks even if core penetration of jet neutrals is not achieved.


Nuclear Fusion | 2013

Control and dissipation of runaway electron beams created during rapid shutdown experiments in DIII-D

E.M. Hollmann; M. E. Austin; J.A. Boedo; N.H. Brooks; N. Commaux; N.W. Eidietis; D.A. Humphreys; V.A. Izzo; A.N. James; T.C. Jernigan; A. Loarte; J. R. Martín-Solís; R.A. Moyer; J.M. Muñoz-Burgos; P.B. Parks; D.L. Rudakov; E. J. Strait; C. Tsui; M. A. Van Zeeland; J.C. Wesley; J.H. Yu

DIII-D experiments on rapid shutdown runaway electron (RE) beams have improved the understanding of the processes involved in RE beam control and dissipation. Improvements in RE beam feedback control have enabled stable confinement of RE beams out to the volt-second limit of the ohmic coil, as well as enabling a ramp down to zero current. Spectroscopic studies of the RE beam have shown that neutrals tend to be excluded from the RE beam centre. Measurements of the RE energy distribution function indicate a broad distribution with mean energy of order several MeV and peak energies of order 30?40?MeV. The distribution function appears more skewed towards low energies than expected from avalanche theory. The RE pitch angle appears fairly directed (????0.2) at high energies and more isotropic at lower energies (??<?100?keV). Collisional dissipation of RE beam current has been studied by massive gas injection of different impurities into RE beams; the equilibrium assimilation of these injected impurities appears to be reasonably well described by radial pressure balance between neutrals and ions. RE current dissipation following massive impurity injection is shown to be more rapid than expected from avalanche theory?this anomalous dissipation may be linked to enhanced radial diffusion caused by the significant quantity of high-Z impurities (typically argon) in the plasma. The final loss of RE beams to the wall has been studied: it was found that conversion of magnetic to kinetic energy is small for RE loss times smaller than the background plasma ohmic decay time of order 1?2?ms.


Physics of Plasmas | 2006

Active control for stabilization of neoclassical tearing modes

D.A. Humphreys; J.R. Ferron; R.J. La Haye; T.C. Luce; C. C. Petty; R. Prater; A.S. Welander

This work describes active control algorithms used by DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] to stabilize and maintain suppression of 3/2 or 2/1 neoclassical tearing modes (NTMs) by application of electron cyclotron current drive (ECCD) at the rational q surface. The DIII-D NTM control system can determine the correct q-surface/ECCD alignment and stabilize existing modes within 100–500ms of activation, or prevent mode growth with preemptive application of ECCD, in both cases enabling stable operation at normalized beta values above 3.5. Because NTMs can limit performance or cause plasma-terminating disruptions in tokamaks, their stabilization is essential to the high performance operation of ITER [R. Aymar et al., ITER Joint Central Team, ITER Home Teams, Nucl. Fusion 41, 1301 (2001)]. The DIII-D NTM control system has demonstrated many elements of an eventual ITER solution, including general algorithms for robust detection of q-surface/ECCD alignment and for real-time maintenance of alignment ...


Nuclear Fusion | 2007

Gas jet disruption mitigation studies on Alcator C-Mod and DIII-D

R. Granetz; E.M. Hollmann; D.G. Whyte; V.A. Izzo; G. Antar; A. Bader; M. Bakhtiari; T. Biewer; J.A. Boedo; T.E. Evans; Ian H. Hutchinson; T.C. Jernigan; D.S. Gray; M. Groth; D.A. Humphreys; C.J. Lasnier; R.A. Moyer; P.B. Parks; Matthew Reinke; D.L. Rudakov; E. J. Strait; J. L. Terry; J. Wesley; W.P. West; G. A. Wurden; J.H. Yu

High-pressure noble gas jet injection is a mitigation technique which potentially satisfies the requirements of fast response time and reliability, without degrading subsequent discharges. Previously reported gas jet experiments on DIII-D showed good success at reducing deleterious disruption effects. In this paper, results of recent gas jet disruption mitigation experiments on Alcator C-Mod and DIII-D are reported. Jointly, these experiments have greatly improved the understanding of gas jet dynamics and the processes involved in mitigating disruption effects. In both machines, the sequence of events following gas injection is observed to be quite similar: the jet neutrals stop near the plasma edge, the edge temperature collapses and large MHD modes are quickly destabilized, mixing the hot plasma core with the edge impurity ions and radiating away the plasma thermal energy. High radiated power fractions are achieved, thus reducing the conducted heat loads to the chamber walls and divertor. A significant (2 × or more) reduction in halo current is also observed. Runaway electron generation is small or absent. These similar results in two quite different tokamaks are encouraging for the applicability of this disruption mitigation technique to ITER.

Collaboration


Dive into the D.A. Humphreys's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge