Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where N.W. Eidietis is active.

Publication


Featured researches published by N.W. Eidietis.


Nuclear Fusion | 2009

Experimental vertical stability studies for ITER performance and design guidance

D.A. Humphreys; T.A. Casper; N.W. Eidietis; M. Ferrara; D.A. Gates; Ian H. Hutchinson; G.L. Jackson; E. Kolemen; J.A. Leuer; J.B. Lister; L.L. LoDestro; W.H. Meyer; L.D. Pearlstein; A. Portone; F. Sartori; M.L. Walker; A.S. Welander; S.M. Wolfe

United States Department of Energy (DE-FC02-04ER54698, DEAC52- 07NA27344, and DE-FG02-04ER54235)


Nuclear Fusion | 2013

Control and dissipation of runaway electron beams created during rapid shutdown experiments in DIII-D

E.M. Hollmann; M. E. Austin; J.A. Boedo; N.H. Brooks; N. Commaux; N.W. Eidietis; D.A. Humphreys; V.A. Izzo; A.N. James; T.C. Jernigan; A. Loarte; J. R. Martín-Solís; R.A. Moyer; J.M. Muñoz-Burgos; P.B. Parks; D.L. Rudakov; E. J. Strait; C. Tsui; M. A. Van Zeeland; J.C. Wesley; J.H. Yu

DIII-D experiments on rapid shutdown runaway electron (RE) beams have improved the understanding of the processes involved in RE beam control and dissipation. Improvements in RE beam feedback control have enabled stable confinement of RE beams out to the volt-second limit of the ohmic coil, as well as enabling a ramp down to zero current. Spectroscopic studies of the RE beam have shown that neutrals tend to be excluded from the RE beam centre. Measurements of the RE energy distribution function indicate a broad distribution with mean energy of order several MeV and peak energies of order 30?40?MeV. The distribution function appears more skewed towards low energies than expected from avalanche theory. The RE pitch angle appears fairly directed (????0.2) at high energies and more isotropic at lower energies (??<?100?keV). Collisional dissipation of RE beam current has been studied by massive gas injection of different impurities into RE beams; the equilibrium assimilation of these injected impurities appears to be reasonably well described by radial pressure balance between neutrals and ions. RE current dissipation following massive impurity injection is shown to be more rapid than expected from avalanche theory?this anomalous dissipation may be linked to enhanced radial diffusion caused by the significant quantity of high-Z impurities (typically argon) in the plasma. The final loss of RE beams to the wall has been studied: it was found that conversion of magnetic to kinetic energy is small for RE loss times smaller than the background plasma ohmic decay time of order 1?2?ms.


Nuclear Fusion | 2011

Overview of KSTAR initial operation

M. Kwon; I. Chavdarovski; Wonho Choe; Y. Chu; P. H. Diamond; N.W. Eidietis; L. Grisham; T. Hatae; D. L. Hillis; D. Humphrey; A.W. Hyatt; M. Joung; J. Ju; K. Kawahata; Hee-Su Kim; J.Y. Kim; Jung-Su Kim; Kyung Min Kim; Y. Kogi; S. Kubo; R. Kumazawa; M. Leconte; J. Leur; J. Lohr; D. Mueller; T. Mutoh; Y. Nagayama; Won Namkung; H.K. Park; B. Patterson

Since the successful first plasma generation in the middle of 2008, three experimental campaigns were successfully made for the KSTAR device, accompanied with a necessary upgrade in the power supply, heating, wall-conditioning and diagnostic systems. KSTAR was operated with the toroidal magnetic field up to 3.6 T and the circular and shaped plasmas with current up to 700 kA and pulse length of 7 s, have been achieved with limited capacity of PF magnet power supplies.The mission of the KSTAR experimental program is to achieve steady-state operations with high performance plasmas relevant to ITER and future reactors. The first phase (2008–2012) of operation of KSTAR is dedicated to the development of operational capabilities for a super-conducting device with relatively short pulse. Development of start-up scenario for a super-conducting tokamak and the understanding of magnetic field errors on start-up are one of the important issues to be resolved. Some specific operation techniques for a super-conducting device are also developed and tested. The second harmonic pre-ionization with 84 and 110 GHz gyrotrons is an example. Various parameters have been scanned to optimize the pre-ionization. Another example is the ICRF wall conditioning (ICWC), which was routinely applied during the shot to shot interval.The plasma operation window has been extended in terms of plasma beta and stability boundary. The achievement of high confinement mode was made in the last campaign with the first neutral beam injector and good wall conditioning. Plasma control has been applied in shape and position control and now a preliminary kinetic control scheme is being applied including plasma current and density. Advanced control schemes will be developed and tested in future operations including active profiles, heating and current drives and control coil-driven magnetic perturbation.


Physics of Plasmas | 2010

Experiments in DIII-D toward achieving rapid shutdown with runaway electron suppression

E.M. Hollmann; N. Commaux; N.W. Eidietis; T. E. Evans; David Allan Humphreys; A.N. James; T.C. Jernigan; P.B. Parks; E. J. Strait; J.C. Wesley; J.H. Yu; M. E. Austin; L. R. Baylor; N. H. Brooks; V.A. Izzo; G.L. Jackson; M. A. Van Zeeland; W. Wu

Experiments have been performed in the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] toward understanding runaway electron formation and amplification during rapid discharge shutdown, as well as toward achieving complete collisional suppression of these runaway electrons via massive delivery of impurities. Runaway acceleration and amplification appear to be well explained using the zero-dimensional (0D) current quench toroidal electric field. 0D or even one-dimensional modeling using a Dreicer seed term, however, appears to be too small to explain the initial runaway seed formation. Up to 15% of the line-average electron density required for complete runaway suppression has been achieved in the middle of the current quench using optimized massive gas injection with multiple small gas valves firing simultaneously. The novel rapid shutdown techniques of massive shattered pellet injection and shell pellet injection have been demonstrated for the first time. Experiments using external magnetic perturbations to deconfine runaways have shown promising preliminary results.


Nuclear Fusion | 2011

Effect of applied toroidal electric field on the growth/decay of plateau-phase runaway electron currents in DIII-D

E.M. Hollmann; P.B. Parks; D.A. Humphreys; N.H. Brooks; N. Commaux; N.W. Eidietis; T.E. Evans; R.C. Isler; A.N. James; T.C. Jernigan; J. Munoz; E. J. Strait; C. Tsui; J.C. Wesley; J.H. Yu

Large relativistic runaway electron currents (0.1?0.5?MA) persisting for ~100?ms are created in the DIII-D tokamak during rapid discharge shut down caused by argon pellet injection. Slow upward and downward ramps in runaway currents were found in response to externally applied loop voltages. Comparison between the observed current growth/decay rate and the rate expected from the knock-on avalanche mechanism suggests that classical collisional dissipation of runaways alone cannot account for the measured growth/damping rates. It appears that a fairly constant anomalous dissipation rate of order 10?s?1 exists, possibly stemming from radial transport or direct orbit losses to the vessel walls, although the possibility of an apparent loss due to current profile shrinking cannot be ruled out at present.


Physics of Plasmas | 2012

Control of post-disruption runaway electron beams in DIII-Da)

N.W. Eidietis; N. Commaux; E.M. Hollmann; D.A. Humphreys; T.C. Jernigan; R.A. Moyer; E. J. Strait; M. A. VanZeeland; J.C. Wesley; J.H. Yu

Recent experiments in the DIII-D tokamak have demonstrated real-time control and dissipation of post-disruption runaway electron (RE) beams. In the event that disruption avoidance, control, and mitigation schemes fail to avoid or suppress RE generation, active control of the RE beam may be an important line of defense to prevent the rapid, localized deposition of RE beam energy onto vulnerable vessel sections. During and immediately after the current quench, excessive radial compression of the runaway beams is avoided by a combination of techniques, improving the likelihood of the beams surviving this dynamic period without a fast termination. Once stabilized, the runaway beams are held in a steady state (out to the ohmic flux limit) with the application of active plasma current and position controls. Beam interaction with the vessel wall is minimized by avoiding distinct thresholds for enhanced wall interaction at small and large radii, corresponding to inner wall and outer limiter interaction, respectiv...


Nuclear Fusion | 2011

KSTAR equilibrium operating space and projected stabilization at high normalized beta

Y.S. Park; S.A. Sabbagh; J.W. Berkery; J. Bialek; Y.M. Jeon; S.H. Hahn; N.W. Eidietis; T.E. Evans; S.W. Yoon; J.-W. Ahn; J.Y. Kim; H.L. Yang; K.-I. You; Y.S. Bae; J.I. Chung; M. Kwon; Y.K. Oh; W.C. Kim; S.G. Lee; H.K. Park; H. Reimerdes; J.A. Leuer; M.L. Walker

Along with an expanded evaluation of the equilibrium operating space of the Korea Superconducting Tokamak Advanced Research, KSTAR, experimental equilibria of the most recent plasma discharges were reconstructed using the EFIT code. In near-circular plasmas created in 2009, equilibria reached a stored energy of 54kJ with a maximum plasma current of 0.34MA. Highly shaped plasmas with near double-null configuration in 2010 achieved H-mode with clear edge localized mode (ELM) activity, and transiently reached a stored energy of up to 257kJ, elongation of 1.96 and normalized beta of 1.3. The plasma current reached 0.7MA. Projecting active and passive stabilization of global MHD instabilities for operation above the ideal no-wall beta limit using the designed control hardware was also considered. Kinetic modification of the ideal MHD n = 1 stability criterion was computed by the MISK code on KSTAR theoretical equilibria with a plasma current of 2MA, internal inductance of 0.7 and normalizedbetaof4.0withsimpledensity,temperatureandrotationprofiles. Thesteepedgepressuregradientofthis equilibrium resulted in the need for significant plasma toroidal rotation to allow thermal particle kinetic resonances to stabilize the resistive wall mode (RWM). The impact of various materials and electrical connections of the passive stabilizing plates on RWM growth rates was analysed, and copper plates reduced the RWM passive growth rate by a factor of 15 compared with stainless steel plates at a normalized beta of 4.4. Computations of active RWM control using the VALEN code showed that the n = 1 mode can be stabilized at normalized beta near the ideal wall limit via control fields produced by the midplane in-vessel control coils (IVCCs) with as low as 0.83kW control power using ideal control system assumptions. The ELM mitigation potential of the IVCC, examined by evaluating the vacuum island overlap created by resonant magnetic perturbations, was analysed using the TRIP3D code. Using a combinationofallIVCCswithdominant n = 2fieldandupper/lowercoilsinanevenparityconfiguration,aChirikov parameter near unity at normalized poloidal flux 0.83, an empirically determined condition for ELM mitigation in DIII-D, was generated in theoretical high-beta equilibria. Chirikov profile optimization was addressed in terms of coil parity and safety factor profile. (Some figures in this article are in colour only in the electronic version)


Physics of Plasmas | 2014

Growth and decay of runaway electrons above the critical electric field under quiescent conditions

C. Paz-Soldan; N.W. Eidietis; R. Granetz; E.M. Hollmann; R. A. Moyer; J.C. Wesley; Jie Zhang; M. E. Austin; N.A. Crocker; A. Wingen; Yubao Zhu

Extremely low density operation free of error field penetration supports the excitation of trace-level quiescent runaway electron (RE) populations during the flat-top of DIII-D Ohmic discharges. Operation in the quiescent regime allows accurate measurement of all key parameters important to RE excitation, including the internal broadband magnetic fluctuation level. RE onset is characterized and found to be consistent with primary (Dreicer) generation rates. Impurity-free collisional suppression of the RE population is investigated by stepping the late-time main-ion density, until RE decay is observed. The transition from growth to decay is found to occur 3–5 times above the theoretical critical electric field for avalanche growth and is thus indicative of anomalous RE loss. This suggests that suppression of tokamak RE avalanches can be achieved at lower density than previously expected, though extrapolation requires predictive understanding of the RE loss mechanism and magnitude.


Nuclear Fusion | 2014

State-of-the-art neoclassical tearing mode control in DIII-D using real-time steerable electron cyclotron current drive launchers

E. Kolemen; A.S. Welander; R.J. La Haye; N.W. Eidietis; D.A. Humphreys; J. Lohr; V. Noraky; B.G. Penaflor; R. Prater; F. Turco

Real-time steerable electron cyclotron current drive (ECCD) has been demonstrated to reduce the power requirements and time needed to remove 3/2 and 2/1 neoclassical tearing modes (NTMs) in the DIII-D tokamak. In a world first demonstration of the techniques required in ITER, the island formation onset is detected automatically, gyrotrons are turned on and the real-time steerable ECCD launcher mirrors are moved promptly to drive current at the location of the islands. This shrinks and suppresses the modes well before saturation using real-time motional Stark effect constrained equilibria reconstruction with advanced feedback and search algorithms to target the deposition. In ITER, this method will reduce the ECCD energy requirement and so raise Q by keeping the EC system off when the NTM is not present. Further, in the experiments with accurate tracking of pre-emptive ECCD to resonant surfaces, both 3/2 and 2/1 modes are prevented from appearing with much lower ECCD peak power than required for removal of a saturated mode.


Physics of Plasmas | 2013

Visible imaging and spectroscopy of disruption runaway electrons in DIII-D

J.H. Yu; E.M. Hollmann; N. Commaux; N.W. Eidietis; D.A. Humphreys; A.N. James; Thomas C Jernigan; R.A. Moyer

The first visible light images of synchrotron emission from disruption runaway electrons are presented. The forward-detected continuum radiation from runaways is identified as synchrotron emission by comparing two survey spectrometers and two visible fast cameras viewing in opposite toroidal directions. Analysis of the elongation of 2D synchrotron images of oval-shaped runaway beams indicates that the velocity pitch angle v⊥/v|| ranges from 0.1 to 0.2 for the detected electrons, with energies above 25 MeV. Analysis of synchrotron intensity from a camera indicates that the tail of the runaway energy distribution reaches energies up to 60 MeV, which agrees with 0D modeling of electron acceleration in the toroidal electric field generated during the current quench. A visible spectrometer provides an independent estimate of the upper limit of runaway electron energy which is roughly consistent with energy determined from camera data. Synchrotron spectra reveal that approximately 1% of the total post-thermal q...

Collaboration


Dive into the N.W. Eidietis's collaboration.

Top Co-Authors

Avatar

E.M. Hollmann

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

N. Commaux

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. Shiraki

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

R.A. Moyer

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge