Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. A. Kniffen is active.

Publication


Featured researches published by D. A. Kniffen.


Astrophysical Journal Supplement Series | 1995

The Third EGRET Catalog of High-Energy Gamma-Ray Sources

R. C. Hartman; David L. Bertsch; S. D. Bloom; Andrew W. Chen; Philip Deines-Jones; Joseph Andre Esposito; C. E. Fichtel; D. P. Friedlander; Stanley D. Hunter; L. M. McDonald; P. Sreekumar; D. J. Thompson; B. B. Jones; Y. C. Lin; P. F. Michelson; P. L. Nolan; W. F. Tompkins; G. Kanbach; H. A. Mayer-Hasselwander; A. Mücke; Martin Pohl; O. Reimer; D. A. Kniffen; Edward J. Schneid; C. von Montigny; R. Mukherjee; B. L. Dingus

The third catalog of high-energy gamma-ray sources detected by the EGRET telescope on the Compton Gamma Ray Observatory includes data from 1991 April 22 to 1995 October 3 (cycles 1, 2, 3, and 4 of the mission). In addition to including more data than the second EGRET catalog and its supplement, this catalog uses completely reprocessed data (to correct a number of mostly minimal errors and problems). The 271 sources (E > 100 MeV) in the catalog include the single 1991 solar flare bright enough to be detected as a source, the Large Magellanic Cloud, five pulsars, one probable radio galaxy detection (Cen A), and 66 high-confidence identifications of blazars (BL Lac objects, flat-spectrum radio quasars, or unidentified flat-spectrum radio sources). In addition, 27 lower confidence potential blazar identifications are noted. Finally, the catalog contains 170 sources not yet identified firmly with known objects, although potential identifications have been suggested for a number of those. A figure is presented that gives approximate upper limits for gamma-ray sources at any point in the sky, as well as information about sources listed in the second catalog and its supplement, that do not appear in this catalog.


The Astrophysical Journal | 1997

EGRET Observations of the Diffuse Gamma-Ray Emission from the Galactic Plane

Stanley D. Hunter; D. L. Bertsch; Jennifer R. Catelli; T. M. Dame; Seth W. Digel; B. L. Dingus; Joseph Andre Esposito; C. E. Fichtel; R. C. Hartman; G. Kanbach; D. A. Kniffen; Y. C. Lin; H. A. Mayer-Hasselwander; P. F. Michelson; C. von Montigny; R. Mukherjee; P. L. Nolan; Edward J. Schneid; P. Sreekumar; P. Thaddeus; D. J. Thompson

The high-energy diffuse gamma-ray emission from the Galactic plane, |b| ≤ 10°, is studied using observations from the Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma-Ray Observatory. The spatial distribution of the diffuse emission has been determined for four broad energy ranges after removing the contribution from point sources detected with greater than 5 σ significance. The longitude and latitude distributions of the intensity, averaged over 4° latitude ranges and 10° longitude ranges, respectively, are shown for the four energy ranges. Spectra of the diffuse emission in 11 energy bands, covering the energy range 30 MeV to 30 GeV, were determined for 10° × 4° (l × b) bins after correcting for the finite EGRET angular resolution. The average spectrum from the direction of the inner Galaxy is shown for 29 energy bands, covering the energy range 30 MeV to 50 GeV. At latitudes |b| > 2°, corresponding to gamma rays emitted within about 3 kpc of the Sun, there is no significant variation in the spectra with Galactic longitude. Comparison of the spectra from the Galactic plane (|b| < 2°) reveals no significant variation with Galactic longitude below about 4 GeV, which suggests that the cosmic-ray electron to proton ratio does not vary significantly throughout the Galaxy. Above 4 GeV, however, there is weak (about 3 σ) evidence for variation of the Galactic plane (|b| < 2°) spectrum with longitude. The spectrum is softer in the direction of the outer Galaxy by about E compared to the spectrum from the inner Galaxy. This variation of the diffuse gamma-ray emission hints at a variation of the cosmic-ray proton spectrum with Galactic radius, which might be expected if cosmic rays are accelerated primarily in the inner Galaxy and then propagate to the outer Galaxy or if the high-energy cosmic rays are confined less well in the outer Galaxy. The spatial and spectral distributions of the diffuse emission are compared with a model calculation of this emission based on dynamic balance and realistic interstellar matter and photon distributions. The spatial comparison is used to establish the value of the molecular mass calibrating ratio N(H2)/WCO and the cosmic-ray/matter coupling scale r0, which are the only adjustable parameters of the model. Comparisons with the observations indicates N(H2)/WCO = (1.56 ± 0.05) × 1020 mol cm-2 (K km s-1)-1 and r0 = (1.76 ± 0.2) kpc. The spatial agreement between this model and the observation is very good. However, above about 1 GeV the integral intensity predicted by the model is about 60% less than the observed intensity. Although the explanation of this excess is unclear, uncertainties in the neutral pion production function or variations in the cosmic-ray spectrum with Galactic radius may partially account for the underprediction. A small medium-latitude (2° < |b| < 10°) excess in the direction of the inner Galaxy exists and may indicate that the low-energy photon density used in the model is too low.


The Astrophysical Journal | 1998

EGRET observations of the extragalactic gamma-ray emission

P. Sreekumar; D. L. Bertsch; B. L. Dingus; Joseph Andre Esposito; C. E. Fichtel; R. C. Hartman; Stanley D. Hunter; G. Kanbach; D. A. Kniffen; Y. C. Lin; H. A. Mayer-Hasselwander; P. F. Michelson; C. von Montigny; A. Mücke; R. Mukherjee; P. L. Nolan; Martin Pohl; O. Reimer; Edward J. Schneid; J. G. Stacy; Floyd W. Stecker; D. J. Thompson; Thomas D. Willis

The all-sky survey in high-energy gamma rays (E > 30 MeV) carried out by EGRET aboard the Compton Gamma Ray Observatory provides a unique opportunity to examine in detail the diffuse gamma-ray emission. The observed diffuse emission has a Galactic component arising from cosmic-ray interactions with the local interstellar gas and radiation, as well as an almost uniformly distributed component that is generally believed to originate outside the Galaxy. Through a careful study and removal of the Galactic diffuse emission, the flux, spectrum, and uniformity of the extragalactic emission are deduced. The analysis indicates that the extragalactic emission is well described by a power-law photon spectrum with an index of -(2.10 ± 0.03) in the 30 MeV to 100 GeV energy range. No large-scale spatial anisotropy or changes in the energy spectrum are observed in the deduced extragalactic emission. The most likely explanation for the origin of this extragalactic high-energy gamma-ray emission is that it arises primarily from unresolved gamma-ray-emitting blazars.


The Astrophysical Journal | 1997

EGRET Observations of High-Energy Gamma-Ray Emission from Blazars: An Update

R. Mukherjee; D. L. Bertsch; S. D. Bloom; B. L. Dingus; Joseph Andre Esposito; C. E. Fichtel; R. C. Hartman; Stanley D. Hunter; G. Kanbach; D. A. Kniffen; Y. C. Lin; H. A. Mayer-Hasselwander; L. M. McDonald; P. F. Michelson; C. von Montigny; A. Mücke; P. L. Nolan; Martin Pohl; O. Reimer; Edward J. Schneid; P. Sreekumar; D. J. Thompson

The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) has so far detected 51 blazars during phases 1, 2, and 3, and cycle 4 of the CGRO mission. We present here a summary of these observations, including flux variations and spectra of the blazars. The high luminosities and time variations seen in the gamma-ray data indicate that gamma rays are an important component of the relativistic jet thought to characterize blazars.


The Astrophysical Journal | 1999

Gamma Radiation from PSR B1055–52

D. J. Thompson; M. Bailes; D. L. Bertsch; James M. Cordes; N. D'Amico; Joseph Andre Esposito; J. P. Finley; R. C. Hartman; W. Hermsen; G. Kanbach; Victoria M. Kaspi; D. A. Kniffen; L. Kuiper; Y. C. Lin; A. G. Lyne; R. N. Manchester; Steven Michael Matz; H. A. Mayer-Hasselwander; P. F. Michelson; P. L. Nolan; H. Ogelman; Martin Pohl; P. V. Ramanamurthy; Parameswaran Sreekumar; O. Reimer; Joseph H. Taylor; M. P. Ulmer

The telescopes on the Compton Gamma Ray Observatory (CGRO) have observed PSR B1055-52 a number of times between 1991 and 1998. From these data a more detailed picture of the gamma radiation from this source has been developed, showing several characteristics that distinguish this pulsar: the light curve is complex; there is no detectable unpulsed emission; the energy spectrum is flat, with no evidence of a sharp high-energy cutoff up to greater than 4 GeV. Comparisons of the gamma-ray data with observations at longer wavelengths show that no two of the known gamma-ray pulsars have quite the same characteristics; this diversity makes interpretation in terms of theoretical models difficult.


The Astrophysical Journal | 1995

Multiwavelength Observations of Markarian 421 During a TeV/X-Ray Flare

D. J. Macomb; C. Akerlof; Hugh D. Aller; Margo F. Aller; D. L. Bertsch; Frederick C. Bruhweiler; J. H. Buckley; D. A. Carter-Lewis; M. F. Cawley; K.-P. Cheng; C. D. Dermer; D. J. Fegan; J. A. Gaidos; Walter Kieran Gear; C. R. Hall; R. C. Hartman; A. M. Hillas; Menas Kafatos; A. D. Kerrick; D. A. Kniffen; Y. Kondo; H. Kubo; R. C. Lamb; F. Makino; Kazuo Makishima; Alan P. Marscher; Julie E. McEnery; I. M. McHardy; D. I. Meyer; E. M. Moore

A TeV flare from the BL Lac object Mrk 421 was detected in May of 1994 by the Whipple Observatory air Cherenkov experiment during which the flux above 250 GeV increased by nearly an order of magnitude over a 2-day period. Contemporaneous observations by ASCA showed the X-ray flux to be in a very high state. We present these results, combined with the first ever simultaneous or nearly simultaneous observations at GeV gamma-ray, UV, IR, mm, and radio energies for this nearest BL Lac object. While the GeV gamma-ray flux increased slightly, there is little evidence for variability comparable to that seen at TeV and X-ray energies. Other wavelengths show even less variability. This provides important constraints on the emission mechanisms at work. We present the multiwavelength spectrum of this gamma-ray blazar for both quiescent and flaring states and discuss the data in terms of current models of blazar emission.


The Astrophysical Journal | 1997

EGRET Observations of the Gamma‐Ray Source 2CG 135+01

D. A. Kniffen; W. C. K. Alberts; D. L. Bertsch; B. L. Dingus; Joseph Andre Esposito; C. E. Fichtel; R. S. Foster; R. C. Hartman; Stanley D. Hunter; G. Kanbach; Y. C. Lin; John Richard Mattox; H. A. Mayer-Hasselwander; P. F. Michelson; C. von Montigny; R. Mukherjee; P. L. Nolan; Josep M. Paredes; Paul S. Ray; Edward J. Schneid; P. Sreekumar; Marco Tavani; D. J. Thompson

The COS B source 2CG 135+01 has been observed by the EGRET instrument on 10 different occasions during the first ~52 months of the Compton Gamma Ray Observatory mission. The source is detected in all but one of the observations. For that one, the exposure was inadequate. The only likely source that is spatially coincident with the gamma-ray position is the radio source GT 0236+610/LS I +61°303. However, there is no compelling evidence for time variations in the gamma-ray emission associated with the radio outbursts from GT 0236+610. Spectral determinations on a timescale of a few days also give no strong evidence for a spectral variation associated with the radio emission of GT 0236+610. Such fluctuations might be expected based on models involving a compact object in an elliptical binary orbit about a massive star. The search for correlations simultaneous with the 8.4 GHz radio outbursts were supported by coordinated observations with the Madrid Deep Space Network during one of the exposures and by Green Bank Interferometer observations on two others. Although there is some possible variability in the gamma-ray flux, it is not clear that it is related to the radio phasing.


Astrophysical Journal Supplement Series | 1999

In-Flight Calibration of EGRET on the Compton Gamma-Ray Observatory

Joseph Andre Esposito; D. L. Bertsch; Andrew W. Chen; B. L. Dingus; C. E. Fichtel; R. C. Hartman; Stanley D. Hunter; G. Kanbach; D. A. Kniffen; Y. C. Lin; H. A. Mayer-Hasselwander; L. M. McDonald; P. F. Michelson; C. von Montigny; R. Mukherjee; P. L. Nolan; O. Reimer; Edward J. Schneid; P. Sreekumar; D. J. Thompson; W. F. Tompkins; Thomas D. Willis

The Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma-Ray Observatory has been operating for over 7 yr since its launch in 1991 April. This span of time far exceeds the design lifetime of 2 yr. As the instrument has aged, several changes have occurred owing to spark chamber gas exchanges as well as some hardware degradation and failures, all of which have an influence on the instrument sensitivity. This paper describes postlaunch measurements and analysis that are done to calibrate the instrument response functions. The updated instrument characteristics are incorporated into the analysis software.


The Astrophysical Journal | 1997

Multiwavelength Observations of 3C 273 in 1993-1995

C. von Montigny; Hugh D. Aller; Margo F. Aller; Frederick C. Bruhweiler; W. Collmar; Thierry J.-L. Courvoisier; P. G. Edwards; C. E. Fichtel; Antonella Fruscione; Gabriele Ghisellini; R. C. Hartman; W. N. Johnson; Menas Kafatos; Tsuneo Kii; D. A. Kniffen; Giselher G. Lichti; F. Makino; K. Mannheim; Alan P. Marscher; B. McBreen; I. M. McHardy; Joseph E. Pesce; Martin Pohl; E. Ramos; W. Reich; E. I. Robson; K. Sasaki; H. Teräsranta; M. Tornikoski; Claudia M. Urry

We present the results of the multiwavelength campaigns on 3C 273 in 1993-1995. During the observations in late 1993, this quasar showed an increase of its flux for energies ≥100 MeV from about 2.1 × 10-7 photons cm-2 s-1 to approximately 5.6 × 10-7 photons cm-2 s-1 during a radio outburst at 14.5, 22, and 37 GHz. However, no one-to-one correlation of the γ-ray radiation with any frequency could be found. The photon spectral index of the high-energy spectrum changed from Γγ = (3.20 ± 0.54) to Γγ = (2.20 ± 0.22) in the sense that the spectrum flattened when the γ-ray flux increased. Fits of the three most prominent models (synchrotron self-Comptonization, external inverse Comptonization, and the proton-initiated cascade model) for the explanation of the high γ-ray emission of active galactic nuclei were performed to the multiwavelength spectrum of 3C 273. All three models are able to represent the basic features of the multiwavelength spectrum. Although there are some differences, the data are still not decisive enough to discriminate between the models.


The Astrophysical Journal | 1995

EGRET Detection of Pulsed Gamma Radiation from PSR B1951+32

P. V. Ramanamurthy; David L. Bertsch; B. L. Dingus; Joseph Andre Esposito; J. M. Fierro; C. E. Fichtel; Stanley D. Hunter; G. Kanbach; D. A. Kniffen; Y. C. Lin; A. G. Lyne; John Richard Mattox; H. A. Mayer-Hasselwander; M. Merck; P. F. Michelson; C. von Montigny; R. Mukherjee; P. L. Nolan; D. J. Thompson

We detected a sixth high-energy gamma-ray pulsar, PSR B1951+32, pulsating in gamma rays at E ≥ 100 MeV with the same 39.5 ms periodicity as in radio, using the data obtained during 1991 May to 1994 July by the Energetic Gamma Ray Experiment Telescope (EGRET) aboard the Compton Gamma Ray Observatory. Although seen only as a weak source amidst the high background of galactic disk emission, the pulsation in high-energy gamma rays is clearly seen. The pulsed radiation has a photon spectral index of -1.74 ± 0.11. There is no evidence as yet for unpulsed emission from the object. The pulsar appears to have an efficiency of ~0.004 for converting its rotational energy loss into gamma rays at E ≥ 100 MeV.

Collaboration


Dive into the D. A. Kniffen's collaboration.

Top Co-Authors

Avatar

C. E. Fichtel

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stanley D. Hunter

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

P. F. Michelson

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. L. Dingus

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

David L. Bertsch

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard Hartman

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

D. J. Thompson

Goddard Space Flight Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge