Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. A. MacLellan is active.

Publication


Featured researches published by D. A. MacLellan.


Applied Physics Letters | 2014

High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions

J. S. Green; A. P. L. Robinson; N. Booth; D. C. Carroll; R. J. Dance; Robert Gray; D. A. MacLellan; P. McKenna; C. D. Murphy; Dean Rusby; L. Wilson

Bright proton beams with maximum energies of up to 30 MeV have been observed in an experiment investigating ion sheath acceleration driven by a short pulse (<50 fs) laser. The scaling of maximum proton energy and total beam energy content at ultra-high intensities of ∼1021 W cm−2 was investigated, with the interplay between target thickness and laser pre-pulse found to be a key factor. While the maximum proton energies observed were maximised for μm-thick targets, the total proton energy content was seen to peak for thinner, 500 nm, foils. The total proton beam energy reached up to 440 mJ (a conversion efficiency of 4%), marking a significant step forward for many laser-driven ion applications. The experimental results are supported by hydrodynamic and particle-in-cell simulations.


Review of Scientific Instruments | 2014

Modified Thomson spectrometer design for high energy, multi-species ion sources

D. Gwynne; S. Kar; D. Doria; H. Ahmed; M. Cerchez; J. Fernandez; Robert Gray; J. S. Green; F. Hanton; D. A. MacLellan; P. McKenna; Z. Najmudin; D. Neely; J. A. Ruiz; A. Schiavi; M. Streeter; M. Swantusch; O. Willi; M. Zepf; M. Borghesi

A modification to the standard Thomson parabola spectrometer is discussed, which is designed to measure high energy (tens of MeV/nucleon), broad bandwidth spectra of multi-species ions accelerated by intense laser plasma interactions. It is proposed to implement a pair of extended, trapezoidal shaped electric plates, which will not only resolve ion traces at high energies, but will also retain the lower energy part of the spectrum. While a longer (along the axis of the undeflected ion beam direction) electric plate design provides effective charge state separation at the high energy end of the spectrum, the proposed new trapezoidal shape will enable the low energy ions to reach the detector, which would have been clipped or blocked by simply extending the rectangular plates to enhance the electrostatic deflection.


Applied Physics Letters | 2012

Multi-pulse enhanced laser ion acceleration using plasma half cavity targets

G. G. Scott; J. S. Green; V. Bagnoud; C. Brabetz; C. M. Brenner; D. C. Carroll; D. A. MacLellan; A. P. L. Robinson; Markus Roth; C. Spindloe; F. Wagner; B. Zielbauer; P. McKenna; D. Neely

We report on a plasma half cavity target design for laser driven ion acceleration that enhances the laser to proton energy conversion efficiency and has been found to modify the low energy region of the proton spectrum. The target design utilizes the high fraction of laser energy reflected from an ionized surface and refocuses it such that a double pulse interaction is attained. We report on numerical simulations and experimental results demonstrating that conversion efficiencies can be doubled, compared to planar foil interactions, when the secondary pulse is delivered within picoseconds of the primary pulse.


New Journal of Physics | 2016

Buffered high charge spectrally-peaked proton beams in the relativistic-transparency regime

Nicholas Dover; C. A. J. Palmer; Matthew Streeter; H. Ahmed; B. Albertazzi; M. Borghesi; D. C. Carroll; Jean-Noël Fuchs; R. Heathcote; P. Hilz; K. F. Kakolee; S. Kar; R. Kodama; A. Kon; D. A. MacLellan; P. McKenna; S. R. Nagel; D. Neely; M. Notley; M. Nakatsutsumi; R. Prasad; G. G. Scott; M. Tampo; M. Zepf; Jörg Schreiber; Z. Najmudin

Spectrally-peaked proton beams of high charge (E-p approximate to 8 MeV, Delta E approximate to 4 MeV, N approximate to 50 nC) have been observed from the interaction of an intense laser (> 10(19) W cm(-2)) with ultrathin CH foils, as measured by spectrally-resolved full beam profiles. These beams are reproducibly generated for foil thicknesses 5-100 nm, and exhibit narrowing divergence with decreasing target thickness down to approximate to 8 degrees for 5 nm. Simulations demonstrate that the narrow energy spread feature is a result of buffered acceleration of protons. The radiation pressure at the front of the target results in asymmetric sheath fields which permeate throughout the target, causing preferential forward acceleration. Due to their higher charge-to-mass ratio, the protons outrun a carbon plasma driven in the relativistic transparency regime.


Nature Communications | 2016

Towards optical polarization control of laser-driven proton acceleration in foils undergoing relativistic transparency

Bruno Gonzalez-Izquierdo; M. King; Robert Gray; Richard Wilson; R. J. Dance; Haydn Powell; D. A. MacLellan; John McCreadie; N. M. H. Butler; S. Hawkes; J. S. Green; C. D. Murphy; Luca C. Stockhausen; D. C. Carroll; N. Booth; G. G. Scott; M. Borghesi; D. Neely; P. McKenna

Control of the collective response of plasma particles to intense laser light is intrinsic to relativistic optics, the development of compact laser-driven particle and radiation sources, as well as investigations of some laboratory astrophysics phenomena. We recently demonstrated that a relativistic plasma aperture produced in an ultra-thin foil at the focus of intense laser radiation can induce diffraction, enabling polarization-based control of the collective motion of plasma electrons. Here we show that under these conditions the electron dynamics are mapped into the beam of protons accelerated via strong charge-separation-induced electrostatic fields. It is demonstrated experimentally and numerically via 3D particle-in-cell simulations that the degree of ellipticity of the laser polarization strongly influences the spatial-intensity distribution of the beam of multi-MeV protons. The influence on both sheath-accelerated and radiation pressure-accelerated protons is investigated. This approach opens up a potential new route to control laser-driven ion sources.


New Journal of Physics | 2014

Azimuthal asymmetry in collective electron dynamics in relativistically transparent laser–foil interactions

Robert Gray; D. A. MacLellan; Bruno Gonzalez-Izquierdo; Haydn Powell; D. C. Carroll; C. D. Murphy; Luca C. Stockhausen; Dean Rusby; G. G. Scott; Richard Wilson; N. Booth; D. R. Symes; S. Hawkes; R. Torres; M. Borghesi; D. Neely; P. McKenna

Asymmetry in the collective dynamics of ponderomotively-driven electrons in the interaction of an ultraintense laser pulse with a relativistically transparent target is demonstrated experimentally. The 2D profile of the beam of accelerated electrons is shown to change from an ellipse aligned along the laser polarization direction in the case of limited transparency, to a double-lobe structure aligned perpendicular to it when a significant fraction of the laser pulse co-propagates with the electrons. The temporally-resolved dynamics of the interaction are investigated via particle-in-cell simulations. The results provide new insight into the collective response of charged particles to intense laser fields over an extended interaction volume, which is important for a wide range of applications, and in particular for the development of promising new ultraintense laser-driven ion acceleration mechanisms involving ultrathin target foils.


Physics of Plasmas | 2013

Injection and transport properties of fast electrons in ultraintense laser-solid interactions

M. Coury; D. C. Carroll; A. P. L. Robinson; Xiaohui Yuan; C. M. Brenner; Matthias Burza; Robert Gray; K. L. Lancaster; Youhua Li; X. X. Lin; D. A. MacLellan; Haydn Powell; M. N. Quinn; O. Tresca; Claes-Göran Wahlström; D. Neely; P. McKenna

Fast electron injection and transport in solid foils irradiated by sub-picosecond-duration laser pulses with peak intensity equal to 4 x 10(20)W/cm(2) is investigated experimentally and via 3D simulations. The simulations are performed using a hybrid-particle-in-cell (PIC) code for a range of fast electron beam injection conditions, with and without inclusion of self-generated resistive magnetic fields. The resulting fast electron beam transport properties are used in rear-surface plasma expansion calculations to compare with measurements of proton acceleration, as a function of target thickness. An injection half-angle of similar to 50 degrees - 70 degrees is inferred, which is significantly larger than that derived from previous experiments under similar conditions


Journal of Plasma Physics | 2015

Measurement of the Angle, Temperature and Flux of Fast Electrons Emitted from Intense Laser-Solid Interactions

Dean Rusby; L. Wilson; Robert Gray; R. J. Dance; N. M. H. Butler; D. A. MacLellan; G. G. Scott; V. Bagnoud; B. Zielbauer; P. McKenna; D. Neely

High-intensity laser-solid interactions generate relativistic electrons, as well as high-energy (multi-MeV) ions and X-rays. The directionality, spectra and total number of electrons that escape atarget-foil is dependent on the absorption, transport and rear-side sheath conditions. Measuring the electrons escaping the target will aid in improving our understanding of these absorption processes and the rear-surface sheath fields that retard the escaping electrons and accelerate ions via the target normal sheath acceleration (TNSA) mechanism. A comprehensive Geant4 study was performed to help analyse measurements made with a wrap-around diagnostic that surrounds the target and uses differential filtering with a FUJI-film image plate detector. The contribution of secondary sources such as X-rays and protons to the measured signal have been taken into account to aid in the retrieval of the electron signal. Angular and spectral data from a high-intensity laser-solid interaction are presented and accompanied by simulations. The total number of emitted electrons has been measured as 2.6 × 1013 with an estimated total energy of 12 ± 1 J from a 100 mu;m Cu target with140 J of incident laser energy during a 4 × 1020 W cm-2 interaction.


Physics of Plasmas | 2016

Intra-pulse transition between ion acceleration mechanisms in intense laser-foil interactions

H. Padda; M. King; Robert Gray; Haydn Powell; Bruno Gonzalez-Izquierdo; Luca C. Stockhausen; Richard Wilson; D. C. Carroll; R. J. Dance; D. A. MacLellan; Xiaohui Yuan; N. M. H. Butler; Remi Capdessus; M. Borghesi; D. Neely; P. McKenna

Multiple ion acceleration mechanisms can occur when an ultrathin foil is irradiated with an intense laser pulse, with the dominant mechanism changing over the course of the interaction. Measurement of the spatial-intensity distribution of the beam of energetic protons is used to investigate the transition from radiation pressure acceleration to transparency-driven processes. It is shown numerically that radiation pressure drives an increased expansion of the target ions within the spatial extent of the laser focal spot, which induces a radial deflection of relatively low energy sheath-accelerated protons to form an annular distribution. Through variation of the target foil thickness, the opening angle of the ring is shown to be correlated to the point in time transparency occurs during the interaction and is maximized when it occurs at the peak of the laser intensity profile. Corresponding experimental measurements of the ring size variation with target thickness exhibit the same trends and provide insight into the intra-pulse laser-plasma evolution.


Review of Scientific Instruments | 2015

Calibration of BAS-TR image plate response to high energy (3-300 MeV) carbon ions

D. Doria; S. Kar; H. Ahmed; A. Alejo; J. Fernandez; M. Cerchez; Robert Gray; F. Hanton; D. A. MacLellan; P. McKenna; Z. Najmudin; D. Neely; L. Romagnani; Jesus Alvarez Ruiz; Gianluca Sarri; C. Scullion; Matthew Streeter; Marco Swantusch; O. Willi; Matthew Zepf; M. Borghesi

The paper presents the calibration of Fuji BAS-TR image plate (IP) response to high energy carbon ions of different charge states by employing an intense laser-driven ion source, which allowed access to carbon energies up to 270 MeV. The calibration method consists of employing a Thomson parabola spectrometer to separate and spectrally resolve different ion species, and a slotted CR-39 solid state detector overlayed onto an image plate for an absolute calibration of the IP signal. An empirical response function was obtained which can be reasonably extrapolated to higher ion energies. The experimental data also show that the IP response is independent of ion charge states.

Collaboration


Dive into the D. A. MacLellan's collaboration.

Top Co-Authors

Avatar

P. McKenna

University of Strathclyde

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Neely

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. C. Carroll

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar

G. G. Scott

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar

Haydn Powell

University of Strathclyde

View shared research outputs
Top Co-Authors

Avatar

N. Booth

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar

A. P. L. Robinson

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar

Dean Rusby

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar

M. Borghesi

Queen's University Belfast

View shared research outputs
Researchain Logo
Decentralizing Knowledge