D. A. Shaughnessy
Lawrence Berkeley National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D. A. Shaughnessy.
Radiochimica Acta | 2010
R. Eichler; N. V. Aksenov; Yu.V. Albin; A. V. Belozerov; G. A. Bozhikov; V. I. Chepigin; S. N. Dmitriev; R. Dressler; H. W. Gäggeler; V. A. Gorshkov; R. A. Henderson; Amanda M. Johnsen; J. M. Kenneally; V. Ya. Lebedev; O. N. Malyshev; K. J. Moody; Yu. Ts. Oganessian; O. V. Petrushkin; D. Piguet; A. G. Popeko; P. Rasmussen; A. Serov; D. A. Shaughnessy; S. V. Shishkin; A. V. Shutov; M. A. Stoyer; N. J. Stoyer; A. I. Svirikhin; E. E. Tereshatov; G. K. Vostokin
Abstract Recently, the chemical investigation of element 112 revealed a highly volatile, noble metallic behaviour, as expected for the last group 12 member of the periodic table. The observed volatility and chemical inertness were ascribed to the growing influence of relativistic effects on the chemical properties of the heaviest elements with increasing nuclear charge. Here, we report for the first time on gas phase chemical experiments aiming at a determination of element 114 properties. This element was investigated using its isotopes 287114 and 288114 produced in the nuclear fusion reactions of 48Ca with 242Pu and 244Pu, respectively. Identification of three atoms of element 114 in thermochromatography experiments and their deposition pattern on a gold surface indicates that this element is at least as volatile as simultaneously investigated elements Hg, At, and element 112. This behaviour is rather unexpected for a typical metal of group 14.
Physical Review C | 2000
D. A. Shaughnessy; J. L. Adams; K. E. Gregorich; M. Lane; C. A. Laue; D. M. Lee; C. A. McGrath; J. B. Patin; Dan Strellis; E. R. Sylwester; P. A. Wilk; Darleane C. Hoffman
Electron-capture delayed fission was observed in {sup 244}Es produced via the {sup 237}Np({sup 12}C,5n){sup 244}Es reaction at 81 MeV (on target) with a production cross section of 0.31{+-}0.12 {micro}b. The mass-yield distribution of the fission fragments is highly asymmetric. The average preneutron-emission total kinetic energy of the fragments was measured to be 186{+-}19 MeV. Based on the ratio of the number of fission events to the measured number of {alpha} decays from the electron-capture daughter {sup 244}Cf (100% {alpha} branch), the probability of delayed fission was determined to be (1.2{+-}0.4) x 10{sup -4}. This value for the delayed fission probability fits the experimentally observed trend of increasing delayed fission probability with increasing Q value for electron-capture.
Journal of Nuclear Science and Technology | 2002
Gabriele Fioni; O. Déruelle; Manssour Fadil; A. Letourneau; F. Marie; Rita Plukiene; D. Ridikas; Ilham Almahamid; D. A. Shaughnessy; Herbert Faust; P. Mutti; Gary Simpson; Igor Tsekhanovich
A new experimental installation has been recently commissioned at the High Flux Reactor of Institut Laue-Langevin (ILL) in Grenoble (France). It gives access to high intensity neutron spectra from pure thermal (5.6 1014 n/s/cm2) to epithermal (2 1015 n/s/cm2). Several of low mass (10 µg) mono-isotopic targets of actinide elements are in the process of being irradiated and analyzed by a number of techniques, from nuclear spectroscopy to off-line mass spectrometry and innovative double-deposit fission micro-chambers. In the present paper we will present the first experiments carried out at the thermal neutron spectrum installation with 242Pu, 241-243Am samples.
Physical Review C | 1998
M. Lane; K. E. Gregorich; D. M. Lee; B. Wierczinski; C. A. McGrath; M.B. Hendricks; D. A. Shaughnessy; Dan Strellis; E. R. Sylwester; P. A. Wilk; Darleane C. Hoffman
We have measured the production cross section of 1.8-s {sup 261}Ha from two different reactions. It was produced in the {sup 250}Cf({sup 15}N,4n) reaction at 84 MeV and in the {sup 243}Am({sup 22}Ne,4n) reaction at 116 MeV. Our rotating wheel system with a special parent-daughter stepping mode was used to detect {alpha}-{alpha} correlations between {sup 261}Ha and {sup 257}Lr. We measured 13 and 9 correlations in the two reactions, respectively. Assuming a 100{percent} {alpha} branch, we have determined the production cross section of {sup 261}Ha to be 0.51{plus_minus}0.20thinspnb in the {sup 250}Cf({sup 15}N,4n) reaction at 84 MeV, and 0.25{plus_minus}0.11thinspnb in the {sup 243}Am({sup 22}Ne,4n) reaction at 116 MeV. Based on the number of fission events observed in the latter reaction, we have been able to set an upper limit of 18{percent} for the spontaneous fission branch of {sup 261}Ha. {copyright} {ital 1998} {ital The American Physical Society}
Target Diagnostics Physics and Engineering for Inertial Confinement Fusion VI | 2017
Cory Waltz; Donald R. Jedlovec; Michael C. Hardy; D. A. Shaughnessy; Narek Gharibyan; Cal A. Smith
The flux of neutrons and charged particles produced from inertial confinement fusion experiments at the National Ignition Facility (NIF) induces measurable concentrations of nuclear reaction products in various target materials. The collection and radiochemical analysis of the post-shot debris can be utilized as an implosion diagnostic to obtain information regarding fuel areal density and ablator-fuel mixing. Furthermore, assessment of the debris from specially designed targets, material doped in capsules or mounted on the external surface of the target assembly, can support experiments relevant to nuclear forensic research. To collect the shot debris, we have deployed the Large Area Solid Radiochemistry Collector (LASR) at NIF. LASR uses a main collector plate that contains a large collection foil with an exposed 20 cm diameter surface located ∼50 cm from the NIF target. This covers ∼0.12 steradians, or about 1% of the total solid angle. We will describe the design, analysis, and operation of this experimental platform as well as the initial results. To speed up the design process 3-dimensional printing was utilized. Design analysis includes the dynamic loading of the NIF target vaporized mass, which was modeled using LS-DYNA.
Archive | 2015
Narek Gharibyan; Ken Moody; D. A. Shaughnessy
The advantage of using depleted uranium (DU) hohlraums in high-yield deuterium-tritium (DT) shots at the National Ignition Facility (NIF) is addressed by Doppner, et al., in great detail [1]. This DU based hohlraum incorporates a thin layer of DU, ~7 μm thick, on the inner surface along with a thin layer of a gold coating, ~0.7 μm thick, while the outer layer is ~22 μm thick gold. A thickness measurement of the DU layer can be performed using an optical microscope where the total DU weight can be computed provided a uniform DU layer. However, the uniformity of the thickness is not constant throughout the hohlraum since CAD drawing calculations of the DU weight do not agree with the computed values from optical measurements [2]. Therefore, a non-destructive method for quantifying the DU content in hohlraums has been established by utilizing gamma-ray spectroscopy. The details of this method, along with results from several hohlraums, are presented in this report.
Sixth International Conference on Fission and Properties of Neutron-Rich Nuclei (ICFN6) | 2017
V. K. Utyonkov; Yu. Ts. Oganessian; S. N. Dmitriev; M. G. Itkis; K. J. Moody; M. A. Stoyer; D. A. Shaughnessy; J. B. Roberto; K. Rykaczewski; J. H. Hamilton
Discovery and investigation of the “Island of stability” of superheavy nuclei at the separator DGFRS in the 238U-249Cf+48Ca reactions is reviewed. The results are compared with the data obtained in chemistry experiments and at the separators SHIP, BGS, TASCA, and GARIS. The synthesis of the heaviest nuclei, their decay properties, and methods of identification are discussed and compared with the criteria that must be satisfied for claiming the discovery of a new chemical element. The role of shell effects in the stability of superheavy nuclei is demonstrated by comparison of the experimental results with empirical systematics and theoretical data.
Archive | 2010
Kenton J. Moody; D. A. Shaughnessy; Karin Casteleyn; Herbert Ottmar; Klaus Lützenkirchen; Maria Wallenius; Thierry Wiss
In 1940, shortly after the discovery of fission, McMillan and Abelson studied the recoil range of fission products induced by neutrons incident on a thin uranium foil (McMillan, 1939; McMillan and Abelson, 1940). While fission products were mostly ejected from the foil, two activities were significantly retained, one with a half-life of 23 min and the other with a half-life of 2.3 days.
Physical Review C | 1998
M. Lane; K. E. Gregorich; D. M. Lee; B. Wierczinski; C. A. McGrath; M.B. Hendricks; D. A. Shaughnessy; Dan Strellis; E. R. Sylwester; P. A. Wilk; Darleane C. Hoffman
We have measured the production cross section of 1.8-s {sup 261}Ha from two different reactions. It was produced in the {sup 250}Cf({sup 15}N,4n) reaction at 84 MeV and in the {sup 243}Am({sup 22}Ne,4n) reaction at 116 MeV. Our rotating wheel system with a special parent-daughter stepping mode was used to detect {alpha}-{alpha} correlations between {sup 261}Ha and {sup 257}Lr. We measured 13 and 9 correlations in the two reactions, respectively. Assuming a 100{percent} {alpha} branch, we have determined the production cross section of {sup 261}Ha to be 0.51{plus_minus}0.20thinspnb in the {sup 250}Cf({sup 15}N,4n) reaction at 84 MeV, and 0.25{plus_minus}0.11thinspnb in the {sup 243}Am({sup 22}Ne,4n) reaction at 116 MeV. Based on the number of fission events observed in the latter reaction, we have been able to set an upper limit of 18{percent} for the spontaneous fission branch of {sup 261}Ha. {copyright} {ital 1998} {ital The American Physical Society}
Physical Review C | 1998
M. Lane; Dan Strellis; E. R. Sylwester; M.B. Hendricks; D. A. Shaughnessy; B. Wierczinski; D. M. Lee; Darleane C. Hoffman; C. A. McGrath; K. E. Gregorich; P. A. Wilk
We have measured the production cross section of 1.8-s {sup 261}Ha from two different reactions. It was produced in the {sup 250}Cf({sup 15}N,4n) reaction at 84 MeV and in the {sup 243}Am({sup 22}Ne,4n) reaction at 116 MeV. Our rotating wheel system with a special parent-daughter stepping mode was used to detect {alpha}-{alpha} correlations between {sup 261}Ha and {sup 257}Lr. We measured 13 and 9 correlations in the two reactions, respectively. Assuming a 100{percent} {alpha} branch, we have determined the production cross section of {sup 261}Ha to be 0.51{plus_minus}0.20thinspnb in the {sup 250}Cf({sup 15}N,4n) reaction at 84 MeV, and 0.25{plus_minus}0.11thinspnb in the {sup 243}Am({sup 22}Ne,4n) reaction at 116 MeV. Based on the number of fission events observed in the latter reaction, we have been able to set an upper limit of 18{percent} for the spontaneous fission branch of {sup 261}Ha. {copyright} {ital 1998} {ital The American Physical Society}