Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. Allan Drummond is active.

Publication


Featured researches published by D. Allan Drummond.


Cell | 2008

Mistranslation-Induced Protein Misfolding as a Dominant Constraint on Coding-Sequence Evolution

D. Allan Drummond; Claus O. Wilke

Strikingly consistent correlations between rates of coding-sequence evolution and gene expression levels are apparent across taxa, but the biological causes behind the selective pressures on coding-sequence evolution remain controversial. Here, we demonstrate conserved patterns of simple covariation between sequence evolution, codon usage, and mRNA level in E. coli, yeast, worm, fly, mouse, and human that suggest that all observed trends stem largely from a unified underlying selective pressure. In metazoans, these trends are strongest in tissues composed of neurons, whose structure and lifetime confer extreme sensitivity to protein misfolding. We propose, and demonstrate using a molecular-level evolutionary simulation, that selection against toxicity of misfolded proteins generated by ribosome errors suffices to create all of the observed covariation. The mechanistic model of molecular evolution that emerges yields testable biochemical predictions, calls into question the use of nonsynonymous-to-synonymous substitution ratios (Ka/Ks) to detect functional selection, and suggests how mistranslation may contribute to neurodegenerative disease.


Proceedings of the National Academy of Sciences of the United States of America | 2005

Why highly expressed proteins evolve slowly

D. Allan Drummond; Jesse D. Bloom; Christoph Adami; Claus O. Wilke; Frances H. Arnold

Much recent work has explored molecular and population-genetic constraints on the rate of protein sequence evolution. The best predictor of evolutionary rate is expression level, for reasons that have remained unexplained. Here, we hypothesize that selection to reduce the burden of protein misfolding will favor protein sequences with increased robustness to translational missense errors. Pressure for translational robustness increases with expression level and constrains sequence evolution. Using several sequenced yeast genomes, global expression and protein abundance data, and sets of paralogs traceable to an ancient whole-genome duplication in yeast, we rule out several confounding effects and show that expression level explains roughly half the variation in Saccharomyces cerevisiae protein evolutionary rates. We examine causes for expressions dominant role and find that genome-wide tests favor the translational robustness explanation over existing hypotheses that invoke constraints on function or translational efficiency. Our results suggest that proteins evolve at rates largely unrelated to their functions and can explain why highly expressed proteins evolve slowly across the tree of life.


Nature Reviews Genetics | 2009

The evolutionary consequences of erroneous protein synthesis

D. Allan Drummond; Claus O. Wilke

Error s in protein synthesis disrupt cellular fitness, cause disease phenotypes and shape gene and genome evolution. Experimental and theoretical results on this topic have accumulated rapidly in disparate fields, such as neurobiology, protein biosynthesis and degradation and molecular evolution, but with limited communication among disciplines. Here, we review studies of error frequencies, the cellular and organismal consequences of errors and the attendant long-range evolutionary responses to errors. We emphasize major areas in which little is known, such as the failure rates of protein folding, in addition to areas in which technological innovations may enable imminent gains, such as the elucidation of translational missense error frequencies. Evolutionary responses to errors fall into two broad categories: adaptations that minimize errors and their attendant costs and adaptations that exploit errors for the organisms benefit.


Proceedings of the National Academy of Sciences of the United States of America | 2005

Thermodynamic prediction of protein neutrality

Jesse D. Bloom; Jonathan J. Silberg; Claus O. Wilke; D. Allan Drummond; Christoph Adami; Frances H. Arnold

We present a simple theory that uses thermodynamic parameters to predict the probability that a protein retains the wild-type structure after one or more random amino acid substitutions. Our theory predicts that for large numbers of substitutions the probability that a protein retains its structure will decline exponentially with the number of substitutions, with the severity of this decline determined by properties of the structure. Our theory also predicts that a protein can gain extra robustness to the first few substitutions by increasing its thermodynamic stability. We validate our theory with simulations on lattice protein models and by showing that it quantitatively predicts previously published experimental measurements on subtilisin and our own measurements on variants of TEM1 beta-lactamase. Our work unifies observations about the clustering of functional proteins in sequence space, and provides a basis for interpreting the response of proteins to substitutions in protein engineering applications.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Misfolded proteins impose a dosage-dependent fitness cost and trigger a cytosolic unfolded protein response in yeast

Kerry A. Geiler-Samerotte; Michael F. Dion; Bogdan Budnik; Stephanie Wang; Daniel L. Hartl; D. Allan Drummond

Evolving lineages face a constant intracellular threat: most new coding sequence mutations destabilize the folding of the encoded protein. Misfolded proteins form insoluble aggregates and are hypothesized to be intrinsically cytotoxic. Here, we experimentally isolate a fitness cost caused by toxicity of misfolded proteins. We exclude other costs of protein misfolding, such as loss of functional protein or attenuation of growth-limiting protein synthesis resources, by comparing growth rates of budding yeast expressing folded or misfolded variants of a gratuitous protein, YFP, at equal levels. We quantify a fitness cost that increases with misfolded protein abundance, up to as much as a 3.2% growth rate reduction when misfolded YFP represents less than 0.1% of total cellular protein. Comparable experiments on variants of the yeast gene orotidine-5′-phosphate decarboxylase (URA3) produce similar results. Quantitative proteomic measurements reveal that, within the cell, misfolded YFP induces coordinated synthesis of interacting cytosolic chaperone proteins in the absence of a wider stress response, providing evidence for an evolved modular response to misfolded proteins in the cytosol. These results underscore the distinct and evolutionarily relevant molecular threat of protein misfolding, independent of protein function. Assuming that most misfolded proteins impose similar costs, yeast cells express almost all proteins at steady-state levels sufficient to expose their encoding genes to selection against misfolding, lending credibility to the recent suggestion that such selection imposes a global constraint on molecular evolution.


Nature Biotechnology | 2007

A diverse family of thermostable cytochrome P450s created by recombination of stabilizing fragments

Yougen Li; D. Allan Drummond; Andrew M Sawayama; Christopher D. Snow; Jesse D. Bloom; Frances H. Arnold

Thermostable enzymes combine catalytic specificity with the toughness required to withstand industrial reaction conditions. Stabilized enzymes also provide robust starting points for evolutionary improvement of other protein properties. We recently created a library of at least 2,300 new active chimeras of the biotechnologically important cytochrome P450 enzymes. Here we show that a chimeras thermostability can be predicted from the additive contributions of its sequence fragments. Based on these predictions, we constructed a family of 44 novel thermostable P450s with half-lives of inactivation at 57 °C up to 108 times that of the most stable parent. Although they differ by as many as 99 amino acids from any known P450, the stable sequences are catalytically active. Among the novel functions they exhibit is the ability to produce drug metabolites. This chimeric P450 family provides a unique ensemble for biotechnological applications and for studying sequence-stability-function relationships.


Cell | 2015

Reversible, Specific, Active Aggregates of Endogenous Proteins Assemble upon Heat Stress

Edward Wallace; Jamie L. Kear-Scott; Evgeny V. Pilipenko; Michael H. Schwartz; Pawel R. Laskowski; Alexandra E. Rojek; Christopher D. Katanski; Joshua A. Riback; Michael F. Dion; Alexander Franks; Edoardo M. Airoldi; Tao Pan; Bogdan Budnik; D. Allan Drummond

Heat causes protein misfolding and aggregation and, in eukaryotic cells, triggers aggregation of proteins and RNA into stress granules. We have carried out extensive proteomic studies to quantify heat-triggered aggregation and subsequent disaggregation in budding yeast, identifying >170 endogenous proteins aggregating within minutes of heat shock in multiple subcellular compartments. We demonstrate that these aggregated proteins are not misfolded and destined for degradation. Stable-isotope labeling reveals that even severely aggregated endogenous proteins are disaggregated without degradation during recovery from shock, contrasting with the rapid degradation observed for many exogenous thermolabile proteins. Although aggregation likely inactivates many cellular proteins, in the case of a heterotrimeric aminoacyl-tRNA synthetase complex, the aggregated proteins remain active with unaltered fidelity. We propose that most heat-induced aggregation of mature proteins reflects the operation of an adaptive, autoregulatory process of functionally significant aggregate assembly and disassembly that aids cellular adaptation to thermal stress.


PLOS Genetics | 2015

Accounting for Experimental Noise Reveals That mRNA Levels, Amplified by Post-Transcriptional Processes, Largely Determine Steady-State Protein Levels in Yeast

Gábor Csárdi; Alexander Franks; David S. Choi; Edoardo M. Airoldi; D. Allan Drummond

Cells respond to their environment by modulating protein levels through mRNA transcription and post-transcriptional control. Modest observed correlations between global steady-state mRNA and protein measurements have been interpreted as evidence that mRNA levels determine roughly 40% of the variation in protein levels, indicating dominant post-transcriptional effects. However, the techniques underlying these conclusions, such as correlation and regression, yield biased results when data are noisy, missing systematically, and collinear---properties of mRNA and protein measurements---which motivated us to revisit this subject. Noise-robust analyses of 24 studies of budding yeast reveal that mRNA levels explain more than 85% of the variation in steady-state protein levels. Protein levels are not proportional to mRNA levels, but rise much more rapidly. Regulation of translation suffices to explain this nonlinear effect, revealing post-transcriptional amplification of, rather than competition with, transcriptional signals. These results substantially revise widely credited models of protein-level regulation, and introduce multiple noise-aware approaches essential for proper analysis of many biological phenomena.


Journal of Molecular Evolution | 2008

Contact density affects protein evolutionary rate from bacteria to animals

Tong Zhou; D. Allan Drummond; Claus O. Wilke

The density of contacts or the fraction of buried sites in a protein structure is thought to be related to a protein’s designability, and genes encoding more designable proteins should evolve faster than other genes. Several recent studies have tested this hypothesis but have found conflicting results. Here, we investigate how a gene’s evolutionary rate is affected by its protein’s contact density, considering the four species Escherichia coli, Saccharomyces cerevisiae, Drosophila melanogaster, and Homo sapiens. We find for all four species that contact density correlates positively with evolutionary rate, and that these correlations do not seem to be confounded by gene expression level. The strength of this signal, however, varies widely among species. We also study the effect of contact density on domain evolution in multidomain proteins and find that a domain’s contact density influences the domain’s evolutionary rate. Within the same protein, a domain with higher contact density tends to evolve faster than a domain with lower contact density. Our study provides evidence that contact density can increase evolutionary rates, and that it acts similarly on the level of entire proteins and of individual protein domains.


Current Opinion in Structural Biology | 2010

Signatures of protein biophysics in coding sequence evolution

Claus O. Wilke; D. Allan Drummond

Since the early days of molecular evolution, the conventional wisdom has been that the evolution of protein-coding genes is primarily determined by functional constraints. Yet recent evidence indicates that the evolution of these genes is strongly shaped by the biophysical processes of protein synthesis, protein folding, and specific as well as nonspecific protein-protein interactions. Selection pressures related to these biophysical processes affect primarily the amino-acid sequence of genes, but they also leave their mark on synonymous sites at the nucleotide level. While evidence for specific selection pressures related to protein biophysics is strong, there is currently no unifying framework that integrates the various selection pressures on coding sequences and disentangles their relative importance.

Collaboration


Dive into the D. Allan Drummond's collaboration.

Top Co-Authors

Avatar

Claus O. Wilke

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frances H. Arnold

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge