Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claus O. Wilke is active.

Publication


Featured researches published by Claus O. Wilke.


Cell | 2008

Mistranslation-Induced Protein Misfolding as a Dominant Constraint on Coding-Sequence Evolution

D. Allan Drummond; Claus O. Wilke

Strikingly consistent correlations between rates of coding-sequence evolution and gene expression levels are apparent across taxa, but the biological causes behind the selective pressures on coding-sequence evolution remain controversial. Here, we demonstrate conserved patterns of simple covariation between sequence evolution, codon usage, and mRNA level in E. coli, yeast, worm, fly, mouse, and human that suggest that all observed trends stem largely from a unified underlying selective pressure. In metazoans, these trends are strongest in tissues composed of neurons, whose structure and lifetime confer extreme sensitivity to protein misfolding. We propose, and demonstrate using a molecular-level evolutionary simulation, that selection against toxicity of misfolded proteins generated by ribosome errors suffices to create all of the observed covariation. The mechanistic model of molecular evolution that emerges yields testable biochemical predictions, calls into question the use of nonsynonymous-to-synonymous substitution ratios (Ka/Ks) to detect functional selection, and suggests how mistranslation may contribute to neurodegenerative disease.


Proceedings of the National Academy of Sciences of the United States of America | 2005

Why highly expressed proteins evolve slowly

D. Allan Drummond; Jesse D. Bloom; Christoph Adami; Claus O. Wilke; Frances H. Arnold

Much recent work has explored molecular and population-genetic constraints on the rate of protein sequence evolution. The best predictor of evolutionary rate is expression level, for reasons that have remained unexplained. Here, we hypothesize that selection to reduce the burden of protein misfolding will favor protein sequences with increased robustness to translational missense errors. Pressure for translational robustness increases with expression level and constrains sequence evolution. Using several sequenced yeast genomes, global expression and protein abundance data, and sets of paralogs traceable to an ancient whole-genome duplication in yeast, we rule out several confounding effects and show that expression level explains roughly half the variation in Saccharomyces cerevisiae protein evolutionary rates. We examine causes for expressions dominant role and find that genome-wide tests favor the translational robustness explanation over existing hypotheses that invoke constraints on function or translational efficiency. Our results suggest that proteins evolve at rates largely unrelated to their functions and can explain why highly expressed proteins evolve slowly across the tree of life.


Journal of Virology | 2006

Residual Human Immunodeficiency Virus Type 1 Viremia in Some Patients on Antiretroviral Therapy Is Dominated by a Small Number of Invariant Clones Rarely Found in Circulating CD4+ T Cells

Justin R. Bailey; Ahmad R. Sedaghat; Tara L. Kieffer; Timothy P. Brennan; Patricia K. Lee; Megan Wind-Rotolo; Christine M. Haggerty; Ashrit R. Kamireddi; Yi Liu; Jessica Lee; Deborah Persaud; Joel E. Gallant; Joseph Cofrancesco; Thomas C. Quinn; Claus O. Wilke; Stuart C. Ray; Janet D. Siliciano; Richard E. Nettles; Robert F. Siliciano

ABSTRACT Antiretroviral therapy can reduce human immunodeficiency virus type 1 (HIV-1) viremia to below the detection limit of ultrasensitive clinical assays (50 copies of HIV-1 RNA/ml). However, latent HIV-1 persists in resting CD4+ T cells, and low residual levels of free virus are found in the plasma. Limited characterization of this residual viremia has been done because of the low number of virions per sample. Using intensive sampling, we analyzed residual viremia and compared these viruses to latent proviruses in resting CD4+ T cells in peripheral blood. For each patient, we found some viruses in the plasma that were identical to viruses in resting CD4+ T cells by pol gene sequencing. However, in a majority of patients, the most common viruses in the plasma were rarely found in resting CD4+ T cells even when the resting cell compartment was analyzed with assays that detect replication-competent viruses. Despite the large diversity of pol sequences in resting CD4+ T cells, the residual viremia was dominated by a homogeneous population of viruses with identical pol sequences. In the most extensively studied case, a predominant plasma sequence was also found in analysis of the env gene, and linkage by long-distance reverse transcriptase PCR established that these predominant plasma sequences represented a single predominant plasma virus clone. The predominant plasma clones were released for months to years without evident sequence change. Thus, in some patients on antiretroviral therapy, the major mechanism for residual viremia involves prolonged production of a small number of viral clones without evident evolution, possibly by cells other than circulating CD4+ T cells.


Artificial Life | 2004

Avida: a software platform for research in computational evolutionary biology

Charles Ofria; Claus O. Wilke

Avida is a software platform for experiments with self-replicating and evolving computer programs. It provides detailed control over experimental settings and protocols, a large array of measurement tools, and sophisticated methods to analyze and post-process experimental data. We explain the general principles on which Avida is built, as well as its main components and their interactions. We also explain how experiments are set up, carried out, and analyzed.


Nature Reviews Genetics | 2009

The evolutionary consequences of erroneous protein synthesis

D. Allan Drummond; Claus O. Wilke

Error s in protein synthesis disrupt cellular fitness, cause disease phenotypes and shape gene and genome evolution. Experimental and theoretical results on this topic have accumulated rapidly in disparate fields, such as neurobiology, protein biosynthesis and degradation and molecular evolution, but with limited communication among disciplines. Here, we review studies of error frequencies, the cellular and organismal consequences of errors and the attendant long-range evolutionary responses to errors. We emphasize major areas in which little is known, such as the failure rates of protein folding, in addition to areas in which technological innovations may enable imminent gains, such as the elucidation of translational missense error frequencies. Evolutionary responses to errors fall into two broad categories: adaptations that minimize errors and their attendant costs and adaptations that exploit errors for the organisms benefit.


Proceedings of the National Academy of Sciences of the United States of America | 2005

Thermodynamic prediction of protein neutrality

Jesse D. Bloom; Jonathan J. Silberg; Claus O. Wilke; D. Allan Drummond; Christoph Adami; Frances H. Arnold

We present a simple theory that uses thermodynamic parameters to predict the probability that a protein retains the wild-type structure after one or more random amino acid substitutions. Our theory predicts that for large numbers of substitutions the probability that a protein retains its structure will decline exponentially with the number of substitutions, with the severity of this decline determined by properties of the structure. Our theory also predicts that a protein can gain extra robustness to the first few substitutions by increasing its thermodynamic stability. We validate our theory with simulations on lattice protein models and by showing that it quantitatively predicts previously published experimental measurements on subtilisin and our own measurements on variants of TEM1 beta-lactamase. Our work unifies observations about the clustering of functional proteins in sequence space, and provides a basis for interpreting the response of proteins to substitutions in protein engineering applications.


PLOS Computational Biology | 2010

A universal trend of reduced mRNA stability near the translation-initiation site in prokaryotes and eukaryotes

Wanjun Gu; Tong Zhou; Claus O. Wilke

Recent studies have suggested that the thermodynamic stability of mRNA secondary structure near the start codon can regulate translation efficiency in Escherichia coli, and that translation is more efficient the less stable the secondary structure. We survey the complete genomes of 340 species for signals of reduced mRNA secondary structure near the start codon. Our analysis includes bacteria, archaea, fungi, plants, insects, fishes, birds, and mammals. We find that nearly all species show evidence for reduced mRNA stability near the start codon. The reduction in stability generally increases with increasing genomic GC content. In prokaryotes, the reduction also increases with decreasing optimal growth temperature. Within genomes, there is variation in the stability among genes, and this variation correlates with gene GC content, codon bias, and gene expression level. For birds and mammals, however, we do not find a genome-wide trend of reduced mRNA stability near the start codon. Yet the most GC rich genes in these organisms do show such a signal. We conclude that reduced stability of the mRNA secondary structure near the start codon is a universal feature of all cellular life. We suggest that the origin of this reduction is selection for efficient recognition of the start codon by initiator-tRNA.


BMC Evolutionary Biology | 2005

Quasispecies theory in the context of population genetics

Claus O. Wilke

BackgroundA number of recent papers have cast doubt on the applicability of the quasispecies concept to virus evolution, and have argued that population genetics is a more appropriate framework to describe virus evolution than quasispecies theory.ResultsI review the pertinent literature, and demonstrate for a number of cases that the quasispecies concept is equivalent to the concept of mutation-selection balance developed in population genetics, and that there is no disagreement between the population genetics of haploid, asexually-replicating organisms and quasispecies theory.ConclusionSince quasispecies theory and mutation-selection balance are two sides of the same medal, the discussion about which is more appropriate to describe virus evolution is moot. In future work on virus evolution, we would do good to focus on the important questions, such as whether we can develop accurate, quantitative models of virus evolution, and to leave aside discussions about the relative merits of perfectly equivalent concepts.


Journal of Virology | 2007

Theory of lethal mutagenesis for viruses

James J. Bull; Rafael Sanjuán; Claus O. Wilke

ABSTRACT Mutation is the basis of adaptation. Yet, most mutations are detrimental, and elevating mutation rates will impair a populations fitness in the short term. The latter realization has led to the concept of lethal mutagenesis for curing viral infections, and work with drugs such as ribavirin has supported this perspective. As yet, there is no formal theory of lethal mutagenesis, although reference is commonly made to Eigens error catastrophe theory. Here, we propose a theory of lethal mutagenesis. With an obvious parallel to the epidemiological threshold for eradication of a disease, a sufficient condition for lethal mutagenesis is that each viral genotype produces, on average, less than one progeny virus that goes on to infect a new cell. The extinction threshold involves an evolutionary component based on the mutation rate, but it also includes an ecological component, so the threshold cannot be calculated from the mutation rate alone. The genetic evolution of a large population undergoing mutagenesis is independent of whether the population is declining or stable, so there is no runaway accumulation of mutations or genetic signature for lethal mutagenesis that distinguishes it from a level of mutagenesis under which the population is maintained. To detect lethal mutagenesis, accurate measurements of the genome-wide mutation rate and the number of progeny per infected cell that go on to infect new cells are needed. We discuss three methods for estimating the former. Estimating the latter is more challenging, but broad limits to this estimate may be feasible.


Molecular Biology and Evolution | 2009

Translationally Optimal Codons Associate with Structurally Sensitive Sites in Proteins

Tong Zhou; Mason Weems; Claus O. Wilke

The mistranslation-induced protein misfolding hypothesis predicts that selection should prefer high-fidelity codons at sites at which translation errors are structurally disruptive and lead to protein misfolding and aggregation. To test this hypothesis, we analyzed the relationship between codon usage bias and protein structure in the genomes of four model organisms, Escherichia coli, yeast, fly, and mouse. Using both the Mantel-Haenszel procedure, which applies to categorical data, and a newly developed association test for continuous variables, we find that translationally optimal codons associate with buried residues and also with residues at sites where mutations lead to large changes in free energy (DeltaDeltaG). In each species, only a subset of all amino acids show this signal, but most amino acids show the signal in at least one species. By repeating the analysis on a reduced data set that excludes interdomain linkers, we show that our results are not caused by an association of rare codons with solvent-accessible linker regions. Finally, we find that our results depend weakly on expression level; the association between optimal codons and buried sites exists at all expression levels, but increases in strength as expression level increases.

Collaboration


Dive into the Claus O. Wilke's collaboration.

Top Co-Authors

Avatar

Christoph Adami

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Austin G. Meyer

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Stephanie J. Spielman

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isabel S. Novella

University of Toledo Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dariya K. Sydykova

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

James J. Bull

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge