Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. B. Sayre is active.

Publication


Featured researches published by D. B. Sayre.


Physics of Plasmas | 2014

Hydrodynamic instability growth and mix experiments at the National Ignition Facilitya)

V. A. Smalyuk; M. A. Barrios; J. A. Caggiano; D. T. Casey; C. Cerjan; D. S. Clark; M. J. Edwards; J. A. Frenje; M. Gatu-Johnson; Vladimir Yu. Glebov; G. P. Grim; S. W. Haan; B. A. Hammel; Alex V. Hamza; D. Hoover; W. W. Hsing; O. A. Hurricane; J. D. Kilkenny; J. L. Kline; J. P. Knauer; J. J. Kroll; O. L. Landen; J. D. Lindl; T. Ma; J. McNaney; M. Mintz; A. S. Moore; A. Nikroo; T. Parham; J. L. Peterson

Hydrodynamic instability growth and its effects on implosion performance were studied at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 443, 2841 (2004)]. Implosion performance and mix have been measured at peak compression using plastic shells filled with tritium gas and containing embedded localized carbon-deuterium diagnostic layers in various locations in the ablator. Neutron yield and ion temperature of the deuterium-tritium fusion reactions were used as a measure of shell-gas mix, while neutron yield of the tritium-tritium fusion reaction was used as a measure of implosion performance. The results have indicated that the low-mode hydrodynamic instabilities due to surface roughness were the primary culprits for yield degradation, with atomic ablator-gas mix playing a secondary role. In addition, spherical shells with pre-imposed 2D modulations were used to measure instability growth in the acceleration phase of the implosions. The capsules were imploded using ig...


Physics of Plasmas | 2017

Symmetry control of an indirectly driven high-density-carbon implosion at high convergence and high velocity

L. Divol; A. Pak; L. Berzak Hopkins; S. Le Pape; N. B. Meezan; E. L. Dewald; D. Ho; S. F. Khan; A. J. Mackinnon; J. S. Ross; D. P. Turnbull; C. R. Weber; Peter M. Celliers; M. Millot; L. R. Benedetti; J. E. Field; N. Izumi; G. A. Kyrala; T. Ma; S. R. Nagel; J. R. Rygg; D. H. Edgell; A. G. MacPhee; C. Goyon; M. Hohenberger; B. J. MacGowan; P. Michel; D. J. Strozzi; W. S. Cassata; D. T. Casey

We report on the most recent and successful effort at controlling the trajectory and symmetry of a high density carbon implosion at the National Ignition Facility. We use a low gasfill (0.3 mg/cc He) bare depleted uranium hohlraum with around 1 MJ of laser energy to drive a 3-shock-ignition relevant implosion. We assess drive performance and we demonstrate symmetry control at convergence 1, 3–5, 12, and 27 to better than ±5 μm using a succession of experimental platforms. The symmetry control was maintained at a peak fuel velocity of 380 km/s. Overall, implosion symmetry measurements are consistent with the pole-equator symmetry of the X-ray drive on the capsule being better than 5% in the foot of the drive (when shocks are launched) and better than 1% during peak drive (main acceleration phase). This level of residual asymmetry should have little impact on implosion performance.


Physics of Plasmas | 2015

Cryogenic tritium-hydrogen-deuterium and deuterium-tritium layer implosions with high density carbon ablators in near-vacuum hohlraums

N. B. Meezan; L. Berzak Hopkins; S. Le Pape; L. Divol; A. J. Mackinnon; T. Döppner; D. Ho; O. S. Jones; S. F. Khan; T. Ma; J. L. Milovich; A. Pak; J. S. Ross; C. A. Thomas; L.R. Benedetti; D. K. Bradley; Peter M. Celliers; D. S. Clark; J. E. Field; S. W. Haan; N. Izumi; G. A. Kyrala; J. D. Moody; P. K. Patel; J. E. Ralph; J. R. Rygg; S. M. Sepke; B. K. Spears; R. Tommasini; R. P. J. Town

High Density Carbon (or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of <10 ns. A series of Inertial Confinement Fusion (ICF) experiments in 2013 on the National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] culminated in a deuterium-tritium (DT) layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a tritium-hydrogen-deuterium (THD) layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightly oblate hot spot shape. Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT i...


Physics of Plasmas | 2015

Higher velocity, high-foot implosions on the National Ignition Facility lasera)

D. A. Callahan; O. A. Hurricane; D. E. Hinkel; T. Döppner; T. Ma; H.-S. Park; M. A. Barrios Garcia; L. Berzak Hopkins; D. T. Casey; C. Cerjan; E. L. Dewald; T. R. Dittrich; M. J. Edwards; S. W. Haan; Alex V. Hamza; J. L. Kline; J. P. Knauer; A. L. Kritcher; O. L. Landen; S. LePape; A. G. MacPhee; J. L. Milovich; A. Nikroo; A. Pak; P. K. Patel; J. R. Rygg; J. E. Ralph; J. D. Salmonson; B. K. Spears; P. T. Springer

By increasing the velocity in “high foot” implosions [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014); Hurricane et al., Nature 506, 343 (2014); Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility laser, we have nearly doubled the neutron yield and the hotspot pressure as compared to the implosions reported upon last year. The implosion velocity has been increased using a combination of the laser (higher power and energy), the hohlraum (depleted uranium wall material with higher opacity and lower specific heat than gold hohlraums), and the capsule (thinner capsules with less mass). We find that the neutron yield from these experiments scales systematically with a velocity-like parameter of the square root of the laser energy divided by the ablator mass. By connecting this parameter with the inferred implosion velocity ( v), we find that for shots with primary yield >1 × 1015 neutrons, the total yield ∼ v9.4. This incre...


Journal of Applied Physics | 2015

Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments

R. Hatarik; D. B. Sayre; J. A. Caggiano; T. G. Phillips; M. J. Eckart; E. Bond; C. Cerjan; G. P. Grim; Edward P. Hartouni; J. P. Knauer; J. M. McNaney; D. H. Munro

Neutron time-of-flight diagnostics have long been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d + t → n + α (DT) and d + d → n + 3He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (Tion) and cold fuel areal density. We report on novel methodologies used to determine neutron yield, apparent Tion, and DSR. These methods invoke a single temperature, static fluid model to describe the neutron peaks from DD and DT reactions and a spline description of the DT spectrum to determine the DSR. Both measurements are performed using a forward modeling technique that includes corrections for line-of-sight attenuation and impulse response of the detection system. These methods produce typical uncertainties for DT Tion of 250 eV, 7% fo...


Physics of Plasmas | 2016

Performance of indirectly driven capsule implosions on the National Ignition Facility using adiabat-shaping

H. F. Robey; V. A. Smalyuk; J. L. Milovich; T. Döppner; D. T. Casey; K. L. Baker; J. L. Peterson; B. Bachmann; L. Berzak Hopkins; E. Bond; J. A. Caggiano; D. A. Callahan; Peter M. Celliers; C. Cerjan; D. S. Clark; S. Dixit; M. J. Edwards; N. Gharibyan; S. W. Haan; B. A. Hammel; Alex V. Hamza; R. Hatarik; O. A. Hurricane; K. S. Jancaitis; O. S. Jones; G.D. Kerbel; J. J. Kroll; K. N. Lafortune; O. L. Landen; T. Ma

A series of indirectly driven capsule implosions has been performed on the National Ignition Facility to assess the relative contributions of ablation-front instability growth vs. fuel compression on implosion performance. Laser pulse shapes for both low and high-foot pulses were modified to vary ablation-front growth and fuel adiabat, separately and controllably. Three principal conclusions are drawn from this study: (1) It is shown that reducing ablation-front instability growth in low-foot implosions results in a substantial (3-10X) increase in neutron yield with no loss of fuel compression. (2) It is shown that reducing the fuel adiabat in high-foot implosions results in a significant (36%) increase in fuel compression together with a small (10%) increase in neutron yield. (3) Increased electron preheat at higher laser power in high-foot implosions, however, appears to offset the gain in compression achieved by adiabat-shaping at lower power. These results taken collectively bridge the space between t...


Physics of Plasmas | 2014

Development of the CD Symcap platform to study gas-shell mix in implosions at the National Ignition Facility

D. T. Casey; V. A. Smalyuk; Robert Tipton; J. Pino; Gary P. Grim; B. A. Remington; Dana P. Rowley; S. V. Weber; M. A. Barrios; L. R. Benedetti; D. L. Bleuel; E. Bond; David K. Bradley; J. A. Caggiano; D. A. Callahan; Charles Cerjan; K. C. Chen; D. H. Edgell; M. J. Edwards; D. N. Fittinghoff; J. A. Frenje; M. Gatu-Johnson; Vladimir Yu. Glebov; S. Glenn; N. Guler; S. W. Haan; Alex V. Hamza; R. Hatarik; H. W. Herrmann; D. Hoover

Surrogate implosions play an important role at the National Ignition Facility (NIF) for isolating aspects of the complex physical processes associated with fully integrated ignition experiments. The newly developed CD Symcap platform has been designed to study gas-shell mix in indirectly driven, pure T2-gas filled CH-shell implosions equipped with 4 μm thick CD layers. This configuration provides a direct nuclear signature of mix as the DT yield (above a characterized D contamination background) is produced by D from the CD layer in the shell, mixing into the T-gas core. The CD layer can be placed at different locations within the CH shell to probe the depth and extent of mix. CD layers placed flush with the gas-shell interface and recessed up to 8 μm have shown that most of the mix occurs at the inner-shell surface. In addition, time-gated x-ray images of the hotspot show large brightly radiating objects traversing through the hotspot around bang-time, which are likely chunks of CH/CD plastic. This platf...


Physics of Plasmas | 2015

Three-dimensional simulations of National Ignition Facility implosions: Insight into experimental observablesa)

B. K. Spears; David H. Munro; Scott M. Sepke; Joseph A. Caggiano; Daniel Clark; R. Hatarik; A. L. Kritcher; D. B. Sayre; C. B. Yeamans; J. P. Knauer; Terry Hilsabeck; J.D. Kilkenny

We simulate in 3D both the hydrodynamics and, simultaneously, the X-ray and neutron diagnostic signatures of National Ignition Facility (NIF) implosions. We apply asymmetric radiation drive to study the impact of low mode asymmetry on diagnostic observables. We examine X-ray and neutron images as well as neutron spectra for these perturbed implosions. The X-ray images show hot spot evolution on small length scales and short time scales, reflecting the incomplete stagnation seen in the simulation. The neutron images show surprising differences from the X-ray images. The neutron spectra provide additional measures of implosion asymmetry. Flow in the hot spot alters the neutron spectral peak, namely, the peak location and width. The changes in the width lead to a variation in the apparent temperature with viewing angle that signals underlying hot spot asymmetry. We compare our new expectations based on the simulated data with NIF data. We find that some recent cryogenic layered experiments show appreciable temperature anisotropy indicating residual flow in the hot spot. We also find some trends in the data that do not reflect our simulation and theoretical understanding.


Physical Review E | 2016

Indications of flow near maximum compression in layered deuterium-tritium implosions at the National Ignition Facility.

M. Gatu Johnson; J. P. Knauer; C. Cerjan; M. J. Eckart; G. P. Grim; Edward P. Hartouni; R. Hatarik; J. D. Kilkenny; D. H. Munro; D. B. Sayre; B. K. Spears; R. Bionta; E. Bond; J. A. Caggiano; D. A. Callahan; D. T. Casey; T. Döppner; J. A. Frenje; V. Yu. Glebov; O. A. Hurricane; A. L. Kritcher; S. LePape; T. Ma; A. J. Mackinnon; N. B. Meezan; P. K. Patel; R. D. Petrasso; J. E. Ralph; P. T. Springer; C. B. Yeamans

An accurate understanding of burn dynamics in implosions of cryogenically layered deuterium (D) and tritium (T) filled capsules, obtained partly through precision diagnosis of these experiments, is essential for assessing the impediments to achieving ignition at the National Ignition Facility. We present measurements of neutrons from such implosions. The apparent ion temperatures T_{ion} are inferred from the variance of the primary neutron spectrum. Consistently higher DT than DD T_{ion} are observed and the difference is seen to increase with increasing apparent DT T_{ion}. The line-of-sight rms variations of both DD and DT T_{ion} are small, ∼150eV, indicating an isotropic source. The DD neutron yields are consistently high relative to the DT neutron yields given the observed T_{ion}. Spatial and temporal variations of the DT temperature and density, DD-DT differential attenuation in the surrounding DT fuel, and fluid motion variations contribute to a DT T_{ion} greater than the DD T_{ion}, but are in a one-dimensional model insufficient to explain the data. We hypothesize that in a three-dimensional interpretation, these effects combined could explain the results.


Physics of Plasmas | 2016

Experimental results of radiation-driven, layered deuterium-tritium implosions with adiabat-shaped drives at the National Ignition Facility

V. A. Smalyuk; H. F. Robey; T. Döppner; D. T. Casey; D. S. Clark; O. S. Jones; J. L. Milovich; J. L. Peterson; B. Bachmann; K. L. Baker; L. R. Benedetti; L. Berzak Hopkins; R. Bionta; E. Bond; D. K. Bradley; D. A. Callahan; Peter M. Celliers; C. Cerjan; K. C. Chen; C. Goyon; G. P. Grim; S. Dixit; M. J. Eckart; M. J. Edwards; M. Farrell; D. N. Fittinghoff; J. A. Frenje; M. Gatu-Johnson; N. Gharibyan; S. W. Haan

Radiation-driven, layered deuterium-tritium (DT) implosions were carried out using 3-shock and 4-shock “adiabat-shaped” drives and plastic ablators on the National Ignition Facility (NIF) [E. M. Campbell et al., AIP Conf. Proc. 429, 3 (1998)]. The purpose of these shots was to gain further understanding on the relative performance of the low-foot implosions of the National Ignition Campaign [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] versus the subsequent high-foot implosions [T. Doppner et al., Phys. Rev. Lett. 115, 055001 (2015)]. The neutron yield performance in the experiment with the 4-shock adiabat-shaped drive was improved by factors ∼3 to ∼10, compared to five companion low-foot shots despite large low-mode asymmetries of DT fuel, while measured compression was similar to its low-foot companions. This indicated that the dominant degradation source for low-foot implosions was ablation-front instability growth, since adiabat shaping significantly stabilized this growth. For the experiment with the low-power 3-shock adiabat-shaped drive, the DT fuel compression was significantly increased, by ∼25% to ∼36%, compared to its companion high-foot implosions. The neutron yield increased by ∼20%, lower than the increase of ∼50% estimated from one-dimensional scaling, suggesting the importance of residual instabilities and asymmetries. For the experiment with the high-power, 3-shock adiabat-shaped drive, the DT fuel compression was slightly increased by ∼14% compared to its companion high-foot experiments. However, the compression was reduced compared to the lower-power 3-shock adiabat-shaped drive, correlated with the increase of hot electrons that hypothetically can be responsible for reduced compression in high-power adiabat-shaped experiments as well as in high-foot experiments. The total neutron yield in the high-power 3-shock adiabat-shaped shot N150416 was 8.5 × 1015 ± 0.2 × 1015, with the fuel areal density of 0.90 ± 0.07 g/cm2, corresponding to the ignition threshold factor parameter IFTX (calculated without alpha heating) of 0.34 ± 0.03 and the yield amplification due to the alpha heating of 2.4 ± 0.2. The performance parameters were among the highest of all shots on NIF and the closest to ignition at this time, based on the IFTX metric. The follow-up experiments were proposed to continue testing physics hypotheses, to measure implosion reproducibility, and to improve quantitative understanding on present implosion results.

Collaboration


Dive into the D. B. Sayre's collaboration.

Top Co-Authors

Avatar

D. T. Casey

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

R. Hatarik

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. A. Caggiano

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. A. Frenje

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

G. P. Grim

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

M. J. Eckart

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

T. Ma

University of Washington

View shared research outputs
Top Co-Authors

Avatar

C. B. Yeamans

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. A. Callahan

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Edward P. Hartouni

Lawrence Livermore National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge