Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D Bailey is active.

Publication


Featured researches published by D Bailey.


Medical Physics | 2011

Using an EPID for patient‐specific VMAT quality assurance

M Bakhtiari; L Kumaraswamy; D Bailey; S de Boer; H Malhotra; Matthew B. Podgorsak

PURPOSE A patient-specific quality assurance (QA) method was developed to verify gantry-specific individual multileaf collimator (MLC) apertures (control points) in volumetric modulated arc therapy (VMAT) plans using an electronic portal imaging device (EPID). METHODS VMAT treatment plans were generated in an Eclipse treatment planning system (TPS). DICOM images from a Varian EPID (aS1000) acquired in continuous acquisition mode were used for pretreatment QA. Each cine image file contains the grayscale image of the MLC aperture related to its specific control point and the corresponding gantry angle information. The TPS MLC file of this RapidArc plan contains the leaf positions for all 177 control points (gantry angles). In-house software was developed that interpolates the measured images based on the gantry angle and overlays them with the MLC pattern for all control points. The 38% isointensity line was used to define the edge of the MLC leaves on the portal images. The software generates graphs and tables that provide analysis for the number of mismatched leaf positions for a chosen distance to agreement at each control point and the frequency in which each particular leaf mismatches for the entire arc. RESULTS Seven patients plans were analyzed using this method. The leaves with the highest mismatched rate were found to be treatment plan dependent. CONCLUSIONS This in-house software can be used to automatically verify the MLC leaf positions for all control points of VMAT plans using cine images acquired by an EPID.


Journal of Applied Clinical Medical Physics | 2012

EPID dosimetry for pretreatment quality assurance with two commercial systems

D Bailey; L Kumaraswamy; M Bakhtiari; H Malhotra; Matthew B. Podgorsak

This study compares the EPID dosimetry algorithms of two commercial systems for pretreatment QA, and analyzes dosimetric measurements made with each system alongside the results obtained with a standard diode array. 126 IMRT fields are examined with both EPID dosimetry systems (EPIDose by Sun Nuclear Corporation, Melbourne FL, and Portal Dosimetry by Varian Medical Systems, Palo Alto CA) and the diode array, MapCHECK (also by Sun Nuclear Corporation). Twenty‐six VMAT arcs of varying modulation complexity are examined with the EPIDose and MapCHECK systems. Optimization and commissioning testing of the EPIDose physics model is detailed. Each EPID IMRT QA system is tested for sensitivity to critical TPS beam model errors. Absolute dose gamma evaluation (3%, 3 mm, 10% threshold, global normalization to the maximum measured dose) yields similar results (within 1%–2%) for all three dosimetry modalities, except in the case of off‐axis breast tangents. For these off‐axis fields, the Portal Dosimetry system does not adequately model EPID response, though a previously‐published correction algorithm improves performance. Both MapCHECK and EPIDose are found to yield good results for VMAT QA, though limitations are discussed. Both the Portal Dosimetry and EPIDose algorithms, though distinctly different, yield similar results for the majority of clinical IMRT cases, in close agreement with a standard diode array. Portal dose image prediction may overlook errors in beam modeling beyond the calculation of the actual fluence, while MapCHECK and EPIDose include verification of the dose calculation algorithm, albeit in simplified phantom conditions (and with limited data density in the case of the MapCHECK detector). Unlike the commercial Portal Dosimetry package, the EPIDose algorithm (when sufficiently optimized) allows accurate analysis of EPID response for off‐axis, asymmetric fields, and for orthogonal VMAT QA. Other forms of QA are necessary to supplement the limitations of the Portal Vision Dosimetry system. PACS numbers: 87.53.Bn, 87.53.Jw, 87.53.Kn, 87.55.Qr, 87.56.Fc, 87.57.uq


Medical Physics | 2011

Statistical variability and confidence intervals for planar dose QA pass rates.

D Bailey; Benjamin E. Nelms; Kristopher Attwood; L Kumaraswamy; Matthew B. Podgorsak

PURPOSE The most common metric for comparing measured to calculated dose, such as for pretreatment quality assurance of intensity-modulated photon fields, is a pass rate (%) generated using percent difference (%Diff), distance-to-agreement (DTA), or some combination of the two (e.g., gamma evaluation). For many dosimeters, the grid of analyzed points corresponds to an array with a low areal density of point detectors. In these cases, the pass rates for any given comparison criteria are not absolute but exhibit statistical variability that is a function, in part, on the detector sampling geometry. In this work, the authors analyze the statistics of various methods commonly used to calculate pass rates and propose methods for establishing confidence intervals for pass rates obtained with low-density arrays. METHODS Dose planes were acquired for 25 prostate and 79 head and neck intensity-modulated fields via diode array and electronic portal imaging device (EPID), and matching calculated dose planes were created via a commercial treatment planning system. Pass rates for each dose plane pair (both centered to the beam central axis) were calculated with several common comparison methods: %Diff/DTA composite analysis and gamma evaluation, using absolute dose comparison with both local and global normalization. Specialized software was designed to selectively sample the measured EPID response (very high data density) down to discrete points to simulate low-density measurements. The software was used to realign the simulated detector grid at many simulated positions with respect to the beam central axis, thereby altering the low-density sampled grid. Simulations were repeated with 100 positional iterations using a 1 detector/cm(2) uniform grid, a 2 detector/cm(2) uniform grid, and similar random detector grids. For each simulation, %/DTA composite pass rates were calculated with various %Diff/DTA criteria and for both local and global %Diff normalization techniques. RESULTS For the prostate and head/neck cases studied, the pass rates obtained with gamma analysis of high density dose planes were 2%-5% higher than respective %/DTA composite analysis on average (ranging as high as 11%), depending on tolerances and normalization. Meanwhile, the pass rates obtained via local normalization were 2%-12% lower than with global maximum normalization on average (ranging as high as 27%), depending on tolerances and calculation method. Repositioning of simulated low-density sampled grids leads to a distribution of possible pass rates for each measured/calculated dose plane pair. These distributions can be predicted using a binomial distribution in order to establish confidence intervals that depend largely on the sampling density and the observed pass rate (i.e., the degree of difference between measured and calculated dose). These results can be extended to apply to 3D arrays of detectors, as well. CONCLUSIONS Dose plane QA analysis can be greatly affected by choice of calculation metric and user-defined parameters, and so all pass rates should be reported with a complete description of calculation method. Pass rates for low-density arrays are subject to statistical uncertainty (vs. the high-density pass rate), but these sampling errors can be modeled using statistical confidence intervals derived from the sampled pass rate and detector density. Thus, pass rates for low-density array measurements should be accompanied by a confidence interval indicating the uncertainty of each pass rate.


Radiology and Oncology | 2010

A fully electronic intensity-modulated radiation therapy quality assurance (IMRT QA) process implemented in a network comprised of independent treatment planning, record and verify, and delivery systems

D Bailey; L Kumaraswamy; Matthew B. Podgorsak

A fully electronic intensity-modulated radiation therapy quality assurance (IMRT QA) process implemented in a network comprised of independent treatment planning, record and verify, and delivery systems Background. The purpose of this study is to implement an electronic method to perform and analyze intensity-modulated radiation therapy quality assurance (IMRT QA) using an aSi megavoltage electronic portal imaging device in a network comprised of independent treatment planning, record and verify (R&V), and delivery systems. Methods. A verification plan was generated in the treatment planning system using the actual treatment plan of a patient. After exporting the treatment fields to the R&V system, the fields were delivered in QA mode with the aSi imager deployed. The resulting dosimetric images are automatically stored in a DICOM-RT format in the delivery system treatment console computer. The relative dose density images are subsequently pushed to the R&V system. The absolute dose images are then transferred electronically from the treatment console computer to the treatment planning system and imported into the verification plan in the dosimetry work space for further analysis. Screen shots of the gamma evaluation and isodose comparison are imported into the R&V system as an electronic file (e.g. PDF) to be reviewed prior to initiation of patient treatment. A relative dose image predicted by the treatment planning system can also be sent to the R&V system to be compared with the relative dose density image measured with the aSi imager. Results. Our department does not have integrated planning, R&V, and delivery systems. In spite of this, we are able to fully implement a paperless and filmless IMRT QA process, allowing subsequent analysis and approval to be more efficient, while the QA document is directly attached to its specific patient chart in the R&V system in electronic form. The calculated and measured relative dose images can be compared electronically within the R&V system to analyze the density differences and ensure proper dose delivery to patients. Conclusions. In the absence of an integrated planning, verifying, and delivery system, we have shown that it is nevertheless possible to develop a completely electronic IMRT QA process.


Medical Physics | 2009

An effective correction algorithm for off-axis portal dosimetry errors

D Bailey; L Kumaraswamy; Matthew B. Podgorsak

Portal dosimetric images acquired for IMRT pretreatment verification show dose errors of up to 15% near the detector edges as compared to dose predictions calculated by a treatment planning system for these off-axis regions. A method is proposed to account for these off-axis effects by precisely correcting the off-axis output factors, which calibrate the imager for absolute dose. Using this method, agreement between the predicted and the measured doses improves by up to 15% for fields near the detector edges, resulting in passing rate improvements of as much as 60% for gamma evaluation of 3 mm, 3% within the collimator jaws.


Journal of Applied Clinical Medical Physics | 2015

TBI lung dose comparisons using bilateral and anteroposterior delivery techniques and tissue density corrections.

D Bailey; Iris Z. Wang; Tara Lakeman; Lee Hales; Anurag K. Singh; Matthew B. Podgorsak

This study compares lung dose distributions for two common techniques of total body photon irradiation (TBI) at extended source‐to‐surface distance calculated with, and without, tissue density correction (TDC). Lung dose correction factors as a function of lateral thorax separation are approximated for bilateral opposed TBI (supine), similar to those published for anteroposterior–posteroanterior (AP–PA) techniques in AAPM Report 17 (i.e., Task Group 29). 3D treatment plans were created retrospectively for 24 patients treated with bilateral TBI, and for whom CT data had been acquired from the head to the lower leg. These plans included bilateral opposed and AP–PA techniques—each with and without — TDC, using source‐to‐axis distance of 377 cm and largest possible field size. On average, bilateral TBI requires 40% more monitor units than AP–PA TBI due to increased separation (26% more for 23 MV). Calculation of midline thorax dose without TDC leads to dose underestimation of 17% on average (standard deviation, 4%) for bilateral 6 MV TBI, and 11% on average (standard deviation, 3%) for 23 MV. Lung dose correction factors (CF) are calculated as the ratio of midlung dose (with TDC) to midline thorax dose (without TDC). Bilateral CF generally increases with patient separation, though with high variability due to individual uniqueness of anatomy. Bilateral CF are 5% (standard deviation, 4%) higher than the same corrections calculated for AP–PA TBI in the 6 MV case, and 4% higher (standard deviation, 2%) for 23 MV. The maximum lung dose is much higher with bilateral TBI (up to 40% higher than prescribed, depending on patient anatomy) due to the absence of arm tissue blocking the anterior chest. Dose calculations for bilateral TBI without TDC are incorrect by up to 24% in the thorax for 6 MV and up to 16% for 23 MV. Bilateral lung CF may be calculated as 1.05 times the values published in Table 6 of AAPM Report 17, though a larger patient pool is necessary to better quantify this trend. Bolus or customized shielding will reduce lung maximum dose in the anterior thorax. PACS numbers: 87.55.D, 87.55.Dk, 87.55.Ne, 87.56.Bd, 87.57.Qp


Medical Physics | 2014

Spatial variation of dosimetric leaf gap and its impact on dose delivery.

L Kumaraswamy; J Schmitt; D Bailey; Zheng Zheng Xu; Matthew B. Podgorsak

PURPOSE During dose calculation, the Eclipse treatment planning system (TPS) retracts the multileaf collimator (MLC) leaf positions by half of the dosimetric leaf gap (DLG) value (measured at central axis) for all leaf positions in a dynamic MLC plan to accurately model the rounded leaf ends. The aim of this study is to map the variation of DLG along the travel path of each MLC leaf pair and quantify how this variation impacts delivered dose. METHODS 6 MV DLG values were measured for all MLC leaf pairs in increments of 1.0 cm (from the line intersecting the CAX and perpendicular to MLC motion) to 13.0 cm off axis distance at dmax. The measurements were performed on two Varian linear accelerators, both employing the Millennium 120-leaf MLCs. The measurements were performed at several locations in the beam with both a Sun Nuclear MapCHECK device and a PTW pinpoint ion chamber. RESULTS The measured DLGs for the middle 40 MLC leaf pairs (each 0.5 cm width) at positions along a line through the CAX and perpendicular to MLC leaf travel direction were very similar, varying maximally by only 0.2 mm. The outer 20 MLC leaf pairs (each 1.0 cm width) have much lower DLG values, about 0.3-0.5 mm lower than the central MLC leaf pair, at their respective central line position. Overall, the mean and the maximum variation between the 0.5 cm width leaves and the 1.0 cm width leaf pairs are 0.32 and 0.65 mm, respectively. CONCLUSIONS The spatial variation in DLG is caused by the variation of intraleaf transmission through MLC leaves. Fluences centered on the CAX would not be affected since DLG does not vary; but any fluences residing significantly off axis with narrow sweeping leaves may exhibit significant dose differences. This is due to the fact that there are differences in DLG between the true DLG exhibited by the 1.0 cm width outer leaves and the constant DLG value utilized by the TPS for dose calculation. Since there are large differences in DLG between the 0.5 cm width leaf pairs and 1.0 cm width leaf pairs, there is a need to correct the TPS plans, especially those with high modulation (narrow dynamic MLC gap), with 2D variation of DLG.


Journal of Applied Clinical Medical Physics | 2016

Evaluation of fluence-based dose delivery incorporating the spatial variation of dosimetric leaf gap (DLG)

L Kumaraswamy; Zhengzheng Xu; D Bailey; J Schmitt; Matthew B. Podgorsak

The Eclipse treatment planning system uses a single dosimetric leaf gap (DLG) value to retract all multileaf collimator leaf positions during dose calculation to model the rounded leaf ends. This study evaluates the dosimetric impact of the 2D variation of DLG on clinical treatment plans based on their degree of fluence modulation. In-house software was developed to retrospectively apply the 2D variation of DLG to 61 clinically treated VMAT plans, as well as to several test plans. The level of modulation of the VMAT cases were determined by calculating their modulation complexity score (MCS). Dose measurements were done using the MapCHECK device at a depth of 5.0 cm for plans with and without the 2D DLG correction. Measurements were compared against predicted dose planes from the TPS using absolute 3%/3 mm and 2%/2 mm gamma criteria for test plans and for VMAT cases, respectively. The gamma pass rate for the 2 mm, 4 mm, and 6 mm sweep test plans increased by 23.2%, 28.7%, and 26.0%, respectively, when the measurements were corrected with 2D variation of DLG. The clinical anal VMAT cases, which had very high MLC modulation, showed the most improvement. The majority of the improvement occurred for doses created by the 1.0 cm width leaves for both the test plans and the VMAT cases. The gamma pass rates for the highly modulated head and neck (H&N) cases, moderately modulated prostate and esophageal cases, and minimally modulated brain cases improved only slightly when corrected with 2D variation of DLG. This is because these cases did not employ the 1.0 cm width leaves for dose calculation and delivery. These data suggest that, at the very least, the TPS plans with highly modulated fluences created by the 1.0 cm fields require 2D DLG correction. Incorporating the 2D variation of DLG for the highly modulated clinical treatment plans improves their planar dose gamma pass rates, especially for fields employing the outer 1.0 cm width MLC leaves. This is because there are differences in DLG between the true DLG exhibited by the 1.0 cm width outer leaves and the constant DLG value modeled by the TPS for dose calculation. PACS numbers: 87.55.D, 87.55.Qr, 87.56.Fc, 87.56.N, 87.56.nk.The Eclipse treatment planning system uses a single dosimetric leaf gap (DLG) value to retract all multileaf collimator leaf positions during dose calculation to model the rounded leaf ends. This study evaluates the dosimetric impact of the 2D variation of DLG on clinical treatment plans based on their degree of fluence modulation. In‐house software was developed to retrospectively apply the 2D variation of DLG to 61 clinically treated VMAT plans, as well as to several test plans. The level of modulation of the VMAT cases were determined by calculating their modulation complexity score (MCS). Dose measurements were done using the MapCHECK device at a depth of 5.0 cm for plans with and without the 2D DLG correction. Measurements were compared against predicted dose planes from the TPS using absolute 3%/3 mm and 2%/2 mm gamma criteria for test plans and for VMAT cases, respectively. The gamma pass rate for the 2 mm, 4 mm, and 6 mm sweep test plans increased by 23.2%, 28.7%, and 26.0%, respectively, when the measurements were corrected with 2D variation of DLG. The clinical anal VMAT cases, which had very high MLC modulation, showed the most improvement. The majority of the improvement occurred for doses created by the 1.0 cm width leaves for both the test plans and the VMAT cases. The gamma pass rates for the highly modulated head and neck (H&N) cases, moderately modulated prostate and esophageal cases, and minimally modulated brain cases improved only slightly when corrected with 2D variation of DLG. This is because these cases did not employ the 1.0 cm width leaves for dose calculation and delivery. These data suggest that, at the very least, the TPS plans with highly modulated fluences created by the 1.0 cm fields require 2D DLG correction. Incorporating the 2D variation of DLG for the highly modulated clinical treatment plans improves their planar dose gamma pass rates, especially for fields employing the outer 1.0 cm width MLC leaves. This is because there are differences in DLG between the true DLG exhibited by the 1.0 cm width outer leaves and the constant DLG value modeled by the TPS for dose calculation. PACS numbers: 87.55.D, 87.55.Qr, 87.56.Fc, 87.56.N, 87.56.nk


Journal of Applied Clinical Medical Physics | 2016

The MapCHECK Measurement Uncertainty function and its effect on planar dose pass rates

D Bailey; Jason D. Spaans; L Kumaraswamy; Matthew B. Podgorsak

Our study aimed to quantify the effect of the Measurement Uncertainty function on planar dosimetry pass rates, as measured and analyzed with the Sun Nuclear Corporation MapCHECK 2 array and its associated software. This optional function is toggled in the program preferences of the software (though turned on by default upon installation), and automatically increases the dose difference tolerance defined by the user for each planar dose comparison. Dose planes from 109 static‐gantry IMRT fields and 40 VMAT arcs, of varying modulation complexity, were measured at 5 cm water‐equivalent depth in the MapCHECK 2 diode array, and respective calculated dose planes were exported from a commercial treatment planning system. Planar dose comparison pass rates were calculated within the Sun Nuclear Corporation analytic software using a number of calculation parameters, including Measurement Uncertainty on and off. By varying the percent difference (%Diff) criterion for similar analyses performed with Measurement Uncertainty turned off, an effective %Diff criterion was defined for each field/arc corresponding to the pass rate achieved with Measurement Uncertainty turned on. On average, the Measurement Uncertainty function increases the user‐defined %Diff criterion by 0.8%‐1.1% for 3%/3 mm analysis, depending on plan type and calculation technique (corresponding to an average change in pass rate of 1.0%‐3.5%, and a maximum change of 8.7%). At the 2%/2 mm level, the Measurement Uncertainty function increases the user‐defined %Diff criterion by 0.7%‐1.2% on average, again depending on plan type and calculation technique (corresponding to an average change in pass rate of 3.5%‐8.1%, and a maximum change of 14.2%). The largest increases in pass rate due to the Measurement Uncertainty function are generally seen with poorly matched planar dose comparisons, while the function has a notably smaller effect as pass rates approach 100%. The Measurement Uncertainty function, then, may substantially increase the pass rates for planar dose comparisons. Meanwhile, the types of uncertainties incorporated into the function (and their associated quantitative estimates, as described in the software users manual) may not be an accurate estimation of actual measurement uncertainty, depending on the users measurement conditions. Pass rates listed in published reports, comparisons between institutions or simply separate workstations, or comparisons with the calculation methods of other vendors, should clearly indicate whether or not the Measurement Uncertainty function is used, since it has the potential to substantially inflate pass rates for typical IMRT and VMAT dose planes. PACS number(s): 87.55.Qr, 87.56.FcOur study aimed to quantify the effect of the Measurement Uncertainty function on planar dosimetry pass rates, as measured and analyzed with the Sun Nuclear Corporation MapCHECK 2 array and its associated software. This optional function is toggled in the program preferences of the software (though turned on by default upon installation), and automatically increases the dose difference tolerance defined by the user for each planar dose comparison. Dose planes from 109 static-gantry IMRT fields and 40 VMAT arcs, of varying modulation complexity, were measured at 5 cm water-equivalent depth in the MapCHECK 2 diode array, and respective calculated dose planes were exported from a commercial treatment planning system. Planar dose comparison pass rates were calculated within the Sun Nuclear Corporation analytic software using a number of calculation parameters, including Measurement Uncertainty on and off. By varying the percent difference (%Diff) criterion for similar analyses performed with Measurement Uncertainty turned off, an effective %Diff criterion was defined for each field/arc corresponding to the pass rate achieved with Measurement Uncertainty turned on. On average, the Measurement Uncertainty function increases the user-defined %Diff criterion by 0.8%-1.1% for 3%/3 mm analysis, depending on plan type and calculation technique (corresponding to an average change in pass rate of 1.0%-3.5%, and a maximum change of 8.7%). At the 2%/2 mm level, the Measurement Uncertainty function increases the user-defined %Diff criterion by 0.7%-1.2% on average, again depending on plan type and calculation technique (corresponding to an average change in pass rate of 3.5%-8.1%, and a maximum change of 14.2%). The largest increases in pass rate due to the Measurement Uncertainty function are generally seen with poorly matched planar dose comparisons, while the function has a notably smaller effect as pass rates approach 100%. The Measurement Uncertainty function, then, may substantially increase the pass rates for planar dose comparisons. Meanwhile, the types of uncertainties incorporated into the function (and their associated quantitative estimates, as described in the software users manual) may not be an accurate estimation of actual measurement uncertainty, depending on the users measurement conditions. Pass rates listed in published reports, comparisons between institutions or simply separate workstations, or comparisons with the calculation methods of other vendors, should clearly indicate whether or not the Measurement Uncertainty function is used, since it has the potential to substantially inflate pass rates for typical IMRT and VMAT dose planes. PACS number(s): 87.55.Qr, 87.56.Fc.


Medical Physics | 2010

SU-GG-T-210: An Examination of the Usefulness of Films in Addition to Electronic Methods in Pre-Treatment IMRT QA

D Bailey; S de Boer; Matthew B. Podgorsak

Purpose: Using radiographs for IMRT QA carries many disadvantages. Electronic QA methods, e.g. diode arrays, have become standard for efficiently and accurately verifying dose distributions. Because diode arrays have relatively low resolution, radiographs might be used in addition to array measurements to qualitatively verify geometric accuracy of fluence delivery. However, the finite ability of the human eye to compare films and TPS printouts is unreliable: diode arrays may detect geometric inaccuracies before the errors are recognizable on film. Does qualitative use of films contribute significantly to the pretreatment verification process? Methods and Materials: Four IMRT fluences (varying modulation) were delivered both on film and MapCHECK1 (Sun Nuclear Corporation). Errors were systematically introduced by omitting portions of the fluence, simulating a communication error between planning and delivery systems. Diode array measurements were compared to the TPS verification plan using DTA (3%, 3mm). Films were compared to TPS printouts by light‐box overlay. Increasingly larger portions of the fluence were omitted until the QA failed, either by errors observed on the film or MapCHECK DTA with <85% passing points. Results: For every modified fluence that failed QA, errors were apparent in MapCHECK before being observed on film. With up to 20% control points omitted, all radiographs appear virtually unchanged to the naked eye. On average, MapCHECK analysis of the same fluences failed due to omission of approximately 7% control points from the center of the fluences and 17% from the outer portions of the fluences. Conclusions: If an IMRT fluence is changed due to data transfer errors, qualitative analysis of radiographs does not improve upon the effectiveness of MapCHECK at detecting the error. Because such errors may not be detected if ≤20% control points are lost/corrupted, DTA analysis should always be accompanied by examination of isodose distributions and dose line profiles.

Collaboration


Dive into the D Bailey's collaboration.

Top Co-Authors

Avatar

Matthew B. Podgorsak

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

L Kumaraswamy

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H Malhotra

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Zhengzheng Xu

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Anurag K. Singh

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Iris Z. Wang

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Kristopher Attwood

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Lee Hales

Roswell Park Cancer Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge