D Beachey
Sunnybrook Health Sciences Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D Beachey.
International Journal of Radiation Oncology Biology Physics | 2003
Jean-Philippe Pignol; Eileen Rakovitch; D Beachey; Claude Le Sech
PURPOSE Halogenated pyrimidines (iododeoxyuridine [IUdR] and bromodeoxyuridine [BUdR]), platinum salts, and gadolinium porphyrins are heavy atom compounds used as radiosensitizers. For IUdR, it has been hypothesized that iodine inner shell ionizations (ISI) and Auger cascades could be one of the primary radiosensitization mechanisms. The purpose of this paper is to estimate the number of ISI produced per tumor cell and per 2 Gy irradiation in clinically relevant modelings. MATERIALS AND METHODS ISI were evaluated using a two-step method. Photon-induced ISI were calculated using the MCNP-4C Monte Carlo code, heavy atom concentrations from clinical data published in the literature, and at various depths in a water phantom irradiated with 6-MV, (60)Co, (137)Cs, or (192)Ir sources. Electron knock-on induced ISI on K, L, and M atomic shells were evaluated with an hybrid method, using simulated electron spectra and cross-sections derived from the Møller formalism. Using a biological dose equivalence of 0.05 Gy per cell ISI, relative biological effectiveness (RBE) values were calculated for each situation. RESULTS For platinum and gadolinium, ISI occurs in far less than 0.1% of the cell, whichever is the configuration. For IUdR and BUdR, ISI occurs in between 45% to 483% of the cell. Due to spectrum degradation, about 3 times more photoelectric ISI are generated at greater than shallower depths, and 10 times more for (192)Ir compared with (60)Co or 6-MV X-rays. Photoelectric ISI are about 3 times more frequent for iodine than bromine, but electron knock-on ISI are more frequent on bromine, and at the end about the same number of ISI are generated for both elements. RBEs were found to be between 1.01 and 1.12 for clinically relevant irradiation settings. CONCLUSIONS The mechanisms of radiosensitization for platinum and gadolinium are clearly not related to an Auger cascade. For halogenated pyrimidines, however, clinically relevant numbers of ISI are generated within each cell. For IUdR, ISI appears to be strongly tied to the photon spectra. Halogenated pyrimidines should be evaluated again clinically, but using lower energy photons like a (192)Ir implant.
Physics in Medicine and Biology | 2006
Lauren O'Malley; Jean-Philippe Pignol; D Beachey; Brian Keller; Joseph Presutti; Michael B. Sharpe
Using efficient immobilization and dedicated beam collimation devices, stereotactic radiosurgery ensures highly conformal treatment of small tumours with limited microscopic extension. One contribution to normal tissue irradiation remains the radiological penumbra. This work aims at demonstrating that intermediate energy photons (IEP), above orthovoltage but below megavoltage, improve dose distribution for stereotactic radiosurgery for small irradiation field sizes due to a dramatic reduction of radiological penumbra. Two different simulation systems were used: (i) Monte Carlo simulation to investigate the dose distribution of monoenergetic IEP between 100 keV and 1 MeV in water phantom; (ii) the Pinnacle3 TPS including a virtual IEP unit to investigate the dosimetry benefit of treating with 11 non-coplanar beams a 2 cm tumour in the middle of a brain adjacent to a 1 mm critical structure. Radiological penumbrae below 300 microm are generated for field size below 2 x 2 cm2 using monoenergetic IEP beams between 200 and 400 keV. An 800 kV beam generated in a 0.5 mm tungsten target maximizes the photon intensity in this range. Pinnacle3 confirms the dramatic reduction in penumbra size. DVHs show for a constant dose distribution conformality, improved dose distribution homogeneity and better sparing of critical structures using a 800 kV beam compared to a 6 MV beam.
Medical Physics | 2007
Brian Keller; D Beachey; Jean-Philippe Pignol
Stereotactic radiosurgery is used to treat intracranial lesions with a high degree of accuracy. At the present time, x-ray energies at or above Co-60 gamma rays are used. Previous Monte Carlo simulations have demonstrated that intermediate energy x-ray photons or IEPs (defined to be photons in the energy range of 0.2-1.2MeV), combined with small field sizes, produce a reduced radiological penumbra leading to a sharper dose gradient, improved dose homogeneity and sparing of critical anatomy adjacent to the target volume. This hypothesis is based on the fact that, for small x-ray fields, a dose outside the treatment volume is dictated mainly by the range of electrons set into motion by x-ray photons. The purpose of this work is: (1) to produce intermediate energy x rays using a detuned medical linear accelerator, (2) to characterize the energy of this beam, (3) to measure the radiological penumbra for IEPs and small fields to compare with that produced by 6MV x rays or Co-60, and (4) to compare these experimental measurements with Monte Carlo computer simulations. The maximum photon energy of our IEP x-ray spectrum was measured to be 1.2MeV. Gafchromic EBT films (ISP Technologies, Wayne, NJ) were irradiated and read using a novel digital microscopy imaging system with high spatial resolution. Under identical irradiation conditions the measured radiological penumbra widths (80%-20% distance), for field sizes ranging from 0.3×0.3to4.0×4.0cm2, varied from 0.3-0.77mm (1.2MV) and from 1.1-2.1mm (6MV). Even more dramatic were the differences found when comparing the 90%-10% or the 95%-5% widths, which are in fact more significant in radiotherapy. Monte Carlo simulations agreed well with the experimental findings. The reduction in radiological penumbra could be substantial for specific clinical situations such as in the treatment of an ocular melanoma abutting the macula or for the treatment of functional disorders such as trigeminal neuralgia (a nonlethal neurological pathology) where no long-term side effect should be induced by the treatment.
Medical Physics | 2008
Brian Keller; Jean-Philippe Pignol; Joe Presutti; D Beachey
A previously conceived and demonstrated principle of reducing penumbra for small radiosurgical dose fields is here now applied to a multiple beam arrangement in a stereotactic head phantom. In this work it is found that the fourfold reduction in radiological penumbra of small, single 1 MV x-ray fields translates to a more conformal, homogeneous dose distribution in the more complex beam arrangements. The film dosimetry is conducted with a high resolution digital microscope to quantify the sharp dose gradients. Further, the Gafchromic EBT film measurements in phantom are compared to calculations using the Xknife RT3 (Radionics, Burlington, MA) treatment planning software (TPS) with modeled 1 MV beam data. An orthogonal pair of coplanar beams and an 18-beam coplanar arc irradiation both yielded agreement between the modeling within the TPS and the film work. Conventional 6 MV modality is compared alongside 1 MV throughout. The 90%-50% and 90%-10% dose gradients at the intersection of the orthogonal beam pair were 1.7 and 4.7 mm for 6 MV versus 0.5 and 1.3 mm for 1 MV for an identical setup. The 18-beam coplanar arc plan yielded 90%-80% and 90%-50% dose gradients of 0.84 and 2.2 mm for 6 MV versus gradients of 0.29 and 1.36 mm for 1 MV for the midaxial slice coplanar with all beamlet axes. Uncertainties in gradient measurements were +/- 0.15 mm. The 18-beam coplanar beam arrangement represented a worst case scenario for penumbra overlap deteriorating the dose distribution. In brief, 1 MV x-rays provided superior homogeneity, conformality, and dose fall-off to 6 MV for the irradiations examined.
Physics in Medicine and Biology | 2014
S Mashouf; Eli Lechtman; Priscilla Lai; Bernhard Keller; A. Karotki; D Beachey; Jean-Philippe Pignol
Permanent seed implant brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose around brachytherapy sources is based on the AAPM TG-43 formalism, which generates the dose in a homogeneous water medium. Recently, AAPM TG-186 emphasized the importance of accounting for tissue heterogeneities. We have previously reported on a methodology where the absorbed dose in tissue can be obtained by multiplying the dose, calculated by the TG-43 formalism, by an inhomogeneity correction factor (ICF). In this work we make use of dual energy CT (DECT) images to extract ICF parameters. The advantage of DECT over conventional CT is that it eliminates the need for tissue segmentation as well as assignment of population based atomic compositions. DECT images of a heterogeneous phantom were acquired and the dose was calculated using both TG-43 and TG-43 [Formula: see text] formalisms. The results were compared to experimental measurements using Gafchromic films in the mid-plane of the phantom. For a seed implant configuration of 8 seeds spaced 1.5 cm apart in a cubic structure, the gamma passing score for 2%/2 mm criteria improved from 40.8% to 90.5% when ICF was applied to TG-43 dose distributions.
Journal of Applied Clinical Medical Physics | 2016
Moti Paudel; Anthony Kim; Arman Sarfehnia; Sayed B. Ahmad; D Beachey; Arjun Sahgal; Brian Keller
A new GPU-based Monte Carlo dose calculation algorithm (GPUMCD), developed by the vendor Elekta for the Monaco treatment planning system (TPS), is capable of modeling dose for both a standard linear accelerator and an Elekta MRI linear accelerator. We have experimentally evaluated this algorithm for a standard Elekta Agility linear accelerator. A beam model was developed in the Monaco TPS (research version 5.09.06) using the commissioned beam data for a 6 MV Agility linac. A heterogeneous phantom representing several scenarios - tumor-in-lung, lung, and bone-in-tissue - was designed and built. Dose calculations in Monaco were done using both the current clinical Monte Carlo algorithm, XVMC, and the new GPUMCD algorithm. Dose calculations in a Pinnacle TPS were also produced using the collapsed cone convolution (CCC) algorithm with heterogeneity correction. Calculations were compared with the measured doses using an ionization chamber (A1SL) and Gafchromic EBT3 films for 2×2 cm2,5×5 cm2, and 10×2 cm2 field sizes. The percentage depth doses (PDDs) calculated by XVMC and GPUMCD in a homogeneous solid water phantom were within 2%/2 mm of film measurements and within 1% of ion chamber measurements. For the tumor-in-lung phantom, the calculated doses were within 2.5%/2.5 mm of film measurements for GPUMCD. For the lung phantom, doses calculated by all of the algorithms were within 3%/3 mm of film measurements, except for the 2×2 cm2 field size where the CCC algorithm underestimated the depth dose by ∼5% in a larger extent of the lung region. For the bone phantom, all of the algorithms were equivalent and calculated dose to within 2%/2 mm of film measurements, except at the interfaces. Both GPUMCD and XVMC showed interface effects, which were more pronounced for GPUMCD and were comparable to film measurements, whereas the CCC algorithm showed these effects poorly. PACS number(s): 87.53.Bn, 87.55.dh, 87.55.km.A new GPU‐based Monte Carlo dose calculation algorithm (GPUMCD), developed by the vendor Elekta for the Monaco treatment planning system (TPS), is capable of modeling dose for both a standard linear accelerator and an Elekta MRI linear accelerator. We have experimentally evaluated this algorithm for a standard Elekta Agility linear accelerator. A beam model was developed in the Monaco TPS (research version 5.09.06) using the commissioned beam data for a 6 MV Agility linac. A heterogeneous phantom representing several scenarios — tumor‐in‐lung, lung, and bone‐in‐tissue — was designed and built. Dose calculations in Monaco were done using both the current clinical Monte Carlo algorithm, XVMC, and the new GPUMCD algorithm. Dose calculations in a Pinnacle TPS were also produced using the collapsed cone convolution (CCC) algorithm with heterogeneity correction. Calculations were compared with the measured doses using an ionization chamber (A1SL) and Gafchromic EBT3 films for 2×2 cm2,5×5 cm2, and 10×2 cm2 field sizes. The percentage depth doses (PDDs) calculated by XVMC and GPUMCD in a homogeneous solid water phantom were within 2%/2 mm of film measurements and within 1% of ion chamber measurements. For the tumor‐in‐lung phantom, the calculated doses were within 2.5%/2.5 mm of film measurements for GPUMCD. For the lung phantom, doses calculated by all of the algorithms were within 3%/3 mm of film measurements, except for the 2×2 cm2 field size where the CCC algorithm underestimated the depth dose by ∼5% in a larger extent of the lung region. For the bone phantom, all of the algorithms were equivalent and calculated dose to within 2%/2 mm of film measurements, except at the interfaces. Both GPUMCD and XVMC showed interface effects, which were more pronounced for GPUMCD and were comparable to film measurements, whereas the CCC algorithm showed these effects poorly. PACS number(s): 87.53.Bn, 87.55.dh, 87.55.km
Medical Physics | 2006
Joe Presutti; Michael B. Sharpe; L O'Malley; D Beachey; Brian Keller; J. Pignol
Purpose: Beam penumbra is significant when using stereotactic radiosurgery to treat small volumes with limited microscopic extensions. It is challenging to irradiate these lesions if a highly critical structure is in close contact with the target. Previous Monte Carlo simulation has demonstrated that using Intermediate EnergyPhotons (IEP, above orthovoltage and below megavoltage) dramatically reduces the radiological penumbra for small field sizeradiosurgery (2 × 2cm2) when compared to a standard 6 MV beam. This study aims at evaluating the dosimetric benefit of IEP. Methods: A virtual IEP unit based on an 800 kV beam spectrum was described in the Pinnacle3 TPS including an extended kernel library to the kilovoltage range. A head phantom with a 1cm diameter target volume situated in the middle of the brain and at 1mm from a critical structure was used to assess the dosimetric advantage of IEP compared to 6MV beam. An 11 beam non‐coplanar arrangement was used to cover the GTV without margin and a dose of 1000cGy was prescribed. Cumulative DVHs were generated for both energies and for the target, the critical structure and the entire brain. Optimal dosing percentages were chosen for dose normalization to ensure comparable target coverage. Results: The 800 kV and 6MV beams were dosed to 92% and 78% isodose lines respectively. DVHs demonstrate that the volume of critical structure that received 40% of the given dose was 5.5 % versus 10 %, and the maximum dose received by the target was 110% and 127% for the 800 kV and 6MV beams respectively. The increase in integral dose to the brain for the 800 kV beam is negligible. Conclusions: An 800 kV beam shows improvements in dose distribution conformality, homogeneity, and critical structure sparing compared to a standard 6MV beam.
Medical Physics | 2014
S Mashouf; Priscilla Lai; Aliaksandr Karotki; Brian Keller; D Beachey; Jean-Philippe Pignol
PURPOSE Seed brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose surrounding the brachytherapy seeds is based on American Association of Physicist in Medicine Task Group No. 43 (TG-43 formalism) which generates the dose in homogeneous water medium. Recently, AAPM Task Group No. 186 emphasized the importance of accounting for tissue heterogeneities. This can be done using Monte Carlo (MC) methods, but it requires knowing the source structure and tissue atomic composition accurately. In this work we describe an efficient analytical dose inhomogeneity correction algorithm implemented using MIM Symphony treatment planning platform to calculate dose distributions in heterogeneous media. METHODS An Inhomogeneity Correction Factor (ICF) is introduced as the ratio of absorbed dose in tissue to that in water medium. ICF is a function of tissue properties and independent of source structure. The ICF is extracted using CT images and the absorbed dose in tissue can then be calculated by multiplying the dose as calculated by the TG-43 formalism times ICF. To evaluate the methodology, we compared our results with Monte Carlo simulations as well as experiments in phantoms with known density and atomic compositions. RESULTS The dose distributions obtained through applying ICF to TG-43 protocol agreed very well with those of Monte Carlo simulations as well as experiments in all phantoms. In all cases, the mean relative error was reduced by at least 50% when ICF correction factor was applied to the TG-43 protocol. CONCLUSION We have developed a new analytical dose calculation method which enables personalized dose calculations in heterogeneous media. The advantages over stochastic methods are computational efficiency and the ease of integration into clinical setting as detailed source structure and tissue segmentation are not needed. University of Toronto, Natural Sciences and Engineering Research Council of Canada.
Medical Physics | 2009
Brian Keller; Jean-Philippe Pignol; D Beachey
Purpose: The radiological penumbra of small radiosurgical dose fields is dictated by the range of secondary electrons, which in turn is determined by the primary photon energy. The purpose of this work is to experimentally compare the dose gradient and homogeneity of a multiple beam dose distribution in a radiosurgery head phantom for 6 MV versus 1 MV while minimizing geometrical penumbra. Methods and Materials: A commercial radiosurgery head phantom (LUCY™) containing Gafchromic EBT film was used for all irradiations. A digital microscopy imaging system resolved steep dose gradients in the films and a Siemens linac was modified to produce 1 MV x‐rays. The XKnife™ RT3 TPS was modeled for both 1 and 6 MV to compare with measurements. Two‐beam (90° apart) and eighteen‐beam (10° apart) irradiations were done in the same plane as the film using a 5 mm tertiary collimator. The geometrical penumbra ranged from 0.2–0.4 mm, equivalent to a linac with a 1 mm focal spot with collimator 20 cm from the isocenter. Dose was normalized at the isocenter at depth 7 cm in phantom. Results: For the two‐beam irradiations, the 90%–50% and 90%–10% dose gradients at the beam intersection were 1.7 & 4.7 mm (6MV) versus 0.5 & 1.3 mm (1 MV) for identical irradiation conditions. For the eighteen‐beam arc, the 90%–80% & 90%–60% dose gradients in the plane of irradiation were 0.84 & 1.7 mm (6MV) versus 0.29 & 0.9 (1 MV). In all cases, the homogeneity across the isocenter was superior for 1 MV. The dose at the entrance of each beam was greater for 1 MV. Conclusions: A 1 MV x‐ray beam showed superior dose gradient and homogeneity compared to 6MV for the irradiations examined at the expense of an increase in dose at the beam entrance for the lower energy.
Medical Physics | 2006
Joe Presutti; L O'Malley; Michael B. Sharpe; Brian Keller; D Beachey; J. Pignol
Stereotactic radiosurgery affords great conformality for small tumour volumes. Our study proposes that the radiological penumbra for an intermediate energy photon beam (IEP, 0.2 – 1 MeV) is greatly reduced compared to a megavoltage beam. From Monte Carlo simulation, an 800kV beam of field size less than 2×2 cm2 was generated from electrons impinging upon a 0.5mm tungsten target. This beam generated a radiological penumbral width (80%–20%) of less than 300μm for small field sizes at depth=5cm in water. A virtual IEP treatment unit (PDDs and profiles generated from Monte Carlo) was created in a Pinnacle treatment planning system (v6.2). An 11 beam non‐coplanar arrangement was used to cover a target volume situated in the middle of a phantom head and at 1mm from a critical structure. Dose volume histograms generated for both the 800kV and a standard 6MV beam showed that the volume of critical structure receiving 10% of the prescription dose was 27% versus 41%. The maximum dose received by the target was 110% (800kV) and 127% (6MV). The 800kV and 6MV beams were dosed to 92% and 78% isodose lines respectively for comparable target coverage. The reduction of radiological penumbra is linked to reduced photon scattering (using small field sizes) and the reduced secondary electron range (using IEP). An 800 kV beam shows superiority over a standard 6MV beam resulting in greater homogeneity and conformality to the target and better sparing of a critical structure in close contact with the target.