Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. Bernhardt is active.

Publication


Featured researches published by D. Bernhardt.


Physical Review Letters | 2007

Storage-ring measurement of the hyperfine induced 47Ti18+(2s2p 3P0 --> 2s2 1S0) transition rate.

S. Schippers; E. W. Schmidt; D. Bernhardt; D. Yu; A. Müller; M. Lestinsky; D. A. Orlov; M. Grieser; R. Repnow; A. Wolf

The hyperfine induced 2s2p (3)P(0) --> 2s(2) (1)S(0) transition rate A(HFI) in berylliumlike (47)Ti(18+) is measured. Resonant electron-ion recombination in a heavy-ion storage ring is employed to monitor the time dependent population of the (3)P(0) state. The experimental value A(HFI)=0.56(3) s(-1) is almost 60% larger than theoretically predicted.


The Astrophysical Journal | 2011

Storage Ring Cross Section Measurements for Electron Impact Ionization of Fe11+ Forming Fe12+ and Fe13+

M. Hahn; D. Bernhardt; M. Grieser; Claude Krantz; M. Lestinsky; A. Müller; Oldrich Novotný; R. Repnow; S. Schippers; A. Wolf; Daniel Wolf Savin

We report ionization cross section measurements for electron impact single ionization (EISI) of Fe11+ forming Fe12+ and electron impact double ionization (EIDI) of Fe11+ forming Fe13+. The measurements cover the center-of-mass energy range from approximately 230 eV to 2300 eV. The experiment was performed using the heavy-ion storage ring TSR located at the Max-Planck-Institut f?r Kernphysik in Heidelberg, Germany. The storage ring approach allows nearly all metastable levels to relax to the ground state before data collection begins. We find that the cross section for single ionization is 30% smaller than was previously measured in a single-pass experiment using an ion beam with an unknown metastable fraction. We also find some significant differences between our experimental cross section for single ionization and recent distorted wave (DW) calculations. The DW Maxwellian EISI rate coefficient for Fe11+ forming Fe12+ may be underestimated by as much as 25% at temperatures for which Fe11+ is abundant in collisional ionization equilibrium. This is likely due to the absence of 3s excitation-autoionization (EA) in the calculations. However, a precise measurement of the cross section due to this EA channel was not possible because this process is not distinguishable experimentally from electron impact excitation of an n = 3 electron to levels of n ? 44 followed by field ionization in the charge state analyzer after the interaction region. Our experimental results also indicate that the EIDI cross section is dominated by the indirect process in which direct single ionization of an inner shell 2l electron is followed by autoionization, resulting in a net double ionization.


Physical Review A | 2014

Recombination of W18+ ions with electrons: absolute rate coefficients from a storage-ring experiment and from theoretical calculations

Kaija Spruck; N. R. Badnell; Claude Krantz; O Novotný; Arno Becker; D. Bernhardt; M. Grieser; Michael Hahn; R. Repnow; Daniel Wolf Savin; A. Wolf; A. Müller; S. Schippers

We present experimentally measured and theoretically calculated rate coefficients for the electron-ion recombination of W18+([Kr]4d104f10) forming W17+. At low electron-ion collision energies, the merged-beam rate coefficient is dominated by strong, mutually overlapping recombination resonances. In the temperature range where the fractional abundance of W18+ is expected to peak in a fusion plasma, the experimentally derived Maxwellian recombination rate coefficient is 5 to 10 times larger than that which is currently recommended for plasma modeling. The complexity of the atomic structure of the open-4f system under study makes the theoretical calculations extremely demanding. Nevertheless, the results of the present Breit-Wigner partitioned dielectronic recombination calculations agree reasonably well with the experimental findings. This also gives confidence in the ability of the theory to generate sufficiently accurate atomic data for the plasma modeling of other complex ions.


The Astrophysical Journal | 2010

Storage ring measurement of electron impact ionization for Mg7+ forming Mg8+

M. Hahn; D. Bernhardt; M. Lestinsky; A. Müller; Oldrich Novotný; S. Schippers; A. Wolf; Daniel Wolf Savin

We report electron impact ionization cross section measurements for Mg 7+ forming Mg 8+ at center of mass energies from approximately 200 eV to 2000 eV. The experimental work was performed using the heavy-ion storage ring TSR located at the Max-Planck-Institut f¨ ur Kernphysik in Heidelberg, Germany. We find good agreement with distorted wave calculations using both the gipper code of the Los Alamos Atomic Physics Code suite and using the Flexible Atomic Code.


Physica Scripta | 2013

Probing nuclear properties by resonant atomic collisions between electrons and ions

C. Brandau; C. Kozhuharov; A. Müller; D. Bernhardt; D. Banas; F. Bosch; F J Currell; C. Dimopoulou; A. Gumberidze; S. Hagmann; P.-M. Hillenbrand; M. Heil; M. Lestinsky; Yuri A. Litvinov; R Märtin; F. Nolden; R. Reuschl; Shahab Sanjari; S. Schippers; D. Schneider; Daria Shubina; Haik Simon; U. Spillmann; Z. Stachura; M. Steck; Th. Stöhlker; G. Weber; M. Wiedeking; N. Winckler; D. Winters

The utilization of the resonant atomic electron–ion collision process of dielectronic recombination (DR) as a tool to probe nuclear properties via isotope shifts and hyperfine effects is discussed. Based on DR, this resonance reaction spectroscopy at electron coolers of heavy-ion storage rings denotes a versatile approach to access nuclear parameters such as charge radius, spin, magnetic moment or lifetimes of long-lived excited nuclear states (isomers). The high sensitivity of DR allows for experiments with artificially synthesized rare isotopes and isomers. Recent experimental progress in the preparation of such exotic species at the ESR storage ring in Darmstadt is presented. The DR technique is exemplified for the case of 234Pa88+ (Z = 91).


Journal of Physics: Conference Series | 2009

Isotope shifts in dielectronic recombination: From stable to in-flight-produced nuclei

C. Brandau; C. Kozhuharov; A. Müller; D. Bernhardt; S. Böhm; F. Bosch; D. Boutin; Frederick Currell; C. Dimopoulou; B. Franzke; A. Gumberidze; Zoltan Harman; U. D. Jentschura; Christoph H. Keitel; H.-J. Kluge; Y. S. Kozhedub; R. Krücken; Yu. A. Litvinov; F. Nolden; B O'Rourke; R. Reuschl; S. Schippers; V. M. Shabaev; U. Spillmann; Z. Stachura; M. Steck; Th. Stöhlker; I. I. Tupitsyn; D. Winters; A. Wolf

The study of isotope shifts and hyperfine effects in dielectronic recombination (DR) resonance spectra strikes a conceptually new path for investigations of nuclear properties such as charge radius, spin, magnetic moment of nuclei or lifetimes of long-lived excited nuclear states. A series of DR experiments with heavy three-electron ions (Li-like) was performed at the heavy-ion storage ring ESR of the GSI Helmholtzzentrum fur Schwerionenforschung, Darmstadt, Germany. In a pilot experiment the two stable isotopes A=142 and A=150 of neodymium ANd57+ were investigated. From the displacement of DR resonances the isotope shifts δE142,150(2s – 2Pl/2) = 40.2(3)(6) meV and δE142,150(2s – 2p3/2) = 42.3(12)(20) meV for 2s – 2Pj transitions of the Li-like ions have been obtained. An evaluation within a full QED framework yielded a change in the mean-square charge radius of 142,150δ(r2) = −1.36(1)(3) fm2. At GSI, in addition to stable isotopes, in-flight synthesized radioisotopes can be studied as well. The production of radioisotopes of interest, the subsequent separation in the storage ring ESR and first DR experiments with the exotic nuclei 237U89+ and 234Pa88+ (Z=91) are presented. The paper is concluded with a brief outlook at future DR experiments with heavy radioisotopes at the ESR.


Astronomy and Astrophysics | 2008

Electron-ion recombination for Fe viii forming Fe vii and Fe ix forming Fe viii: Measurements and theory

E. W. Schmidt; S. Schippers; D. Bernhardt; A. Müller; Jens Hoffmann; M. Lestinsky; D. A. Orlov; A. Wolf; D. Lukic; Daniel Wolf Savin; N. R. Badnell

The photorecombination rate coefficients of potassium-like Fe viii ions forming calcium-like Fe vii and of argon-like Fe ix forming potassium-like Fe viii were measured by employing the merged electron-ion beams method at the Heidelberg heavy-ion storagering TSR. New theoretical calculations with the AUTOSTRUCTURE code were carried out for dielectronic recombination (DR) and trielectronic recombination (TR) for both ions. We compare these experimental and theoretical results and also compare with previously recommended rate coefficients. The DR and TR resonances were experimentally investigated in the electron-ion collision energy ranges 0–120 eV and 0–151 eV for Fe viii and Fe ix. Experimentally derived Fe viii and Fe ix DR + TR plasma rate coefficients are provided in the temperature range kBT = 0.2 to 1000 eV. Their uncertainties amount to <±26% and <±35% at a 90% confidence level for Fe viii and Fe ix, respectively.


The Astrophysical Journal | 2017

Photoionization of Ne Atoms and Ne+ Ions Near the K Edge: PrecisionSpectroscopy and Absolute Cross-sections

A. Müller; D. Bernhardt; A. Borovik; Ticia Buhr; J. Hellhund; K. Holste; A. L. David Kilcoyne; S. Klumpp; M. Martins; S. Ricz; Jörn Seltmann; Jens Viefhaus; S. Schippers

Author(s): Muller, A; Bernhardt, D; Borovik, A; Buhr, T; Hellhund, J; Holste, K; Kilcoyne, ALD; Klumpp, S; Martins, M; Ricz, S; Seltmann, J; Viefhaus, J; Schippers, S | Abstract:


Physical Review A | 2014

Absolute rate coefficients for photorecombination and electron-impact ionization of magnesiumlike iron ions from measurements at a heavy-ion storage ring

D. Bernhardt; Arno Becker; M. Grieser; Michael Hahn; Claude Krantz; M. Lestinsky; O Novotný; R. Repnow; Daniel Wolf Savin; Kaija Spruck; A. Wolf; A. Müller; Schippers

Rate coefficients for photorecombination (PR) and cross sections for electron-impact ionization (EII) of Fe 14 + , forming Fe 13 + and Fe 15 + , respectively, have been measured by employing the electron-ion merged-beams technique at a heavy-ion storage ring. Rate coefficients for PR and EII of Fe 14 + ions in a plasma are derived from the experimental measurements. Simple parametrizations of the experimentally derived plasma rate coefficients are provided for use in the modeling of photoionized and collisionally ionized plasmas. In the temperature ranges where Fe 14 + is expected to form in such plasmas, the latest theoretical rate coefficients of Altun et al. [Astron. Astrophys. 474, 1051 (2007)] for PR and of Dere [Astron. Astrophys. 466, 771 (2007)] for EII agree with the experimental results to within the experimental uncertainties. Common features in the PR and EII resonance structures are identified and discussed.


Physical Review A | 2013

Effect of an external magnetic field on the determination of E1M1 two-photon decay rates in Be-like ions

Jon Grumer; Wenxian Li; D. Bernhardt; Jiguang Li; S. Schippers; Tomas Brage; Per Jönsson; R. Hutton; Yaming Zou

In this work we report on ab initio theoretical results for the magnetic-field-induced 2s 2p P-3(0) -> 2s(2) S-1(0) E1 transition for ions in the beryllium isoelectronic sequence between Z = 5 and 92. It has been proposed that the rate of the E1M1 two-photon transition 2s 2p P-3(0) -> 2s(2) S-1(0) can be extracted from the lifetime of the P-3(0) state in Be-like ions with zero nuclear spin by employing resonant recombination in a storage ring. This experimental approach involves a perturbing external magnetic field. The effect of this field needs to be evaluated in order to properly extract the two-photon rate from the measured decay curves. The magnetic-field-induced transition rates are carefully evaluated, and it is shown that, with a typical storage-ring field strength, it is dominant or of the same order as the E1M1 rate for low-and mid-Z ions. Results for several field strengths and ions are presented, and we also give a simple Z-dependent formula for the rate. We estimate the uncertainties of our model to be within 5% for low-and mid-Z ions and slightly larger for more highly charged ions. Furthermore we evaluate the importance of including both perturber states, P-3(1) and P-1(1), and it is shown that excluding the influence of the P-1(1) perturber overestimates the rate by up to 26% for the mid-Z ions. (Less)

Collaboration


Dive into the D. Bernhardt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge