Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. Bootsma is active.

Publication


Featured researches published by D. Bootsma.


Nature | 1999

Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms

Gijsbertus T. J. van der Horst; Manja Muijtjens; Kumiko Kobayashi; Riya Takano; Shin-ichiro Kanno; Masashi Takao; Jan de Wit; Anton Verkerk; André P. M. Eker; Dik van Leenen; Ruud Marinus Buijs; D. Bootsma; Jan H.J. Hoeijmakers; Akira Yasui

Many biochemical, physiological and behavioural processes show circadian rhythms which are generated by an internal time-keeping mechanism referred to as the biological clock. According to rapidly developing models, the core oscillator driving this clockis composed of an autoregulatory transcription–(post) translation-based feedback loop involving a set of ‘clock’ genes,. Molecular clocks do not oscillate with an exact 24-hour rhythmicity but are entrained to solar day/night rhythms by light. The mammalian proteins Cry1 and Cry2, which are members of the family of plant blue-light receptors (cryptochromes) and photolyases, have been proposed as candidate light receptors for photoentrainment of the biological clock. Here we show that mice lacking the Cry1 or Cry2 protein display accelerated and delayed free-running periodicity of locomotor activity, respectively. Strikingly, in the absence of both proteins, an instantaneous and complete loss of free-running rhythmicity is observed. This suggests that, in addition to a possible photoreceptor and antagonistic clock-adjusting function, both proteins are essential for the maintenance of circadian rhythmicity.


Molecular Cell | 1998

Xeroderma Pigmentosum Group C Protein Complex Is the Initiator of Global Genome Nucleotide Excision Repair

Kaoru Sugasawa; Jessica M.Y. Ng; Chikahide Masutani; Shigenori Iwai; Peter J. van der Spek; André P. M. Eker; Fumio Hanaoka; D. Bootsma; Jan H.J. Hoeijmakers

The XPC-HR23B complex is specifically involved in global genome but not transcription-coupled nucleotide excision repair (NER). Its function is unknown. Using a novel DNA damage recognition-competition assay, we identified XPC-HR23B as the earliest damage detector to initiate NER: it acts before the known damage-binding protein XPA. Coimmunoprecipitation and DNase I footprinting show that XPC-HR23B binds to a variety of NER lesions. These results resolve the function of XPC-HR23B, define the first NER stages, and suggest a two-step mechanism of damage recognition involving damage detection by XPC-HR23B followed by damage verification by XPA. This provides a plausible explanation for the extreme damage specificity exhibited by global genome repair. In analogy, in the transcription-coupled NER subpathway, RNA polymerase II may take the role of XPC. After this subpathway-specific initial lesion detection, XPA may function as a common damage verifier and adaptor to the core of the NER apparatus.


Cell | 1992

ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes

Christine Troelstra; Alain J. van Gool; Jan de Wit; Wim Vermeulen; D. Bootsma; Jan H.J. Hoeijmakers

Cells from patients with the UV-sensitive nucleotide excision repair disorder Cockaynes syndrome (CS) have a specific defect in preferential repair of lesions from the transcribed strand of active genes. This system permits quick resumption of transcription after UV exposure. Here we report the characterization of ERCC6, a gene involved in preferential repair in eukaryotes. ERCC6 corrects the repair defect of CS complementation group B (CS-B). It encodes a protein of 1493 amino acids, containing seven consecutive domains conserved between DNA and RNA helicases. The entire helicase region bears striking homology to segments in recently discovered proteins involved in transcription regulation, chromosome stability, and DNA repair. Mutation analysis of a CS-B patient indicates that the gene is not essential for cell viability and is specific for preferential repair of transcribed sequences.


Cell | 1997

Disruption of mouse RAD54 reduces ionizing radiation resistance and homologous recombination.

Jeroen Essers; Rudolf W. Hendriks; Sigrid Swagemakers; Christine Troelstra; Jan de Wit; D. Bootsma; Jan H.J. Hoeijmakers; Roland Kanaar

Double-strand DNA break (DSB) repair by homologous recombination occurs through the RAD52 pathway in Saccharomyces cerevisiae. Its biological importance is underscored by the conservation of many RAD52 pathway genes, including RAD54, from fungi to humans. We have analyzed the phenotype of mouse RAD54-/- (mRAD54-/-) cells. Consistent with a DSB repair defect, these cells are sensitive to ionizing radiation, mitomycin C, and methyl methanesulfonate, but not to ultraviolet light. Gene targeting experiments demonstrate that homologous recombination in mRAD54-/- cells is reduced compared to wild-type cells. These results imply that, besides DNA end-joining mediated by DNA-dependent protein kinase, homologous recombination contributes to the repair of DSBs in mammalian cells. Furthermore, we show that mRAD54-/- mice are viable and exhibit apparently normal V(D)J and immunoglobulin class-switch recombination. Thus, mRAD54 is not required for the recombination processes that generate functional immunoglobulin and T cell receptor genes.


Cell | 1996

Inactivation of the HR6B ubiquitin-conjugating DNA repair enzyme in mice causes male sterility associated with chromatin modification.

Henk P. Roest; J van Klaveren; J. de Wit; C.G van Gurp; Marcel H. M. Koken; M. Vermey; J.H. van Roijen; Jos W. Hoogerbrugge; J. T. M. Vreeburg; Willy M. Baarends; D. Bootsma; J.A Grootegoed; Jan H.J. Hoeijmakers

The ubiquitin-conjugating yeast enzyme RAD6 and its human homologs hHR6A and hHR6B are implicated in postreplication repair and damage-induced mutagenesis. The yeast protein is also required for sporulation and may modulate chromatin structure via histone ubiquitination. We report the phenotype of the first animal mutant in the ubiquitin pathway: inactivation of the hHR6B-homologous gene in mice causes male infertility. Derailment of spermatogenesis becomes overt during the postmeiotic condensation of chromatin in spermatids. These findings provide a parallel between yeast sporulation and mammalian spermatogenesis and strongly implicate hHR6-dependent ubiquitination in chromatin remodeling. Since heterozygous male mice and even knockout female mice are completely normal and fertile and thus able to transmit the defect, similar hHR6B mutations may cause male infertility in man.


Cell | 1990

A Presumed DNA Helicase Encoded by ERCC-3 Is Involved in the Human Repair Disorders Xeroderma Pigmentosum and Cockayne's Syndrome

Geert Weeda; Reinier C.A. van Ham; Wim Vermeulen; D. Bootsma; Alex J. van der Eb; Jan H.J. Hoeijmakers

The human gene ERCC-3 specifically corrects the defect in an early step of the DNA excision repair pathway of UV-sensitive rodent mutants of complementation group 3. The predicted 782 amino acid ERCC-3 protein harbors putative nucleotide, chromatin, and helix-turn-helix DNA binding domains and seven consecutive motifs conserved between two superfamilies of DNA and RNA helicases, strongly suggesting that it is a DNA repair helicase. ERCC-3-deficient rodent mutants phenotypically resemble the human repair syndrome xeroderma pigmentosum (XP). ERCC-3 specifically corrects the excision defect in one of the eight XP complementation groups, XP-B. The sole XP-B patient presents an exceptional conjunction of two rare repair disorders: XP and Cockaynes syndrome. This patients DNA contains a C----A transversion in the splice acceptor sequence of the last intron of the only ERCC-3 allele that is detectably expressed, leading to a 4 bp insertion in the mRNA and an inactivating frameshift in the C-terminus of the protein. Because XP is associated with predisposition to skin cancer, ERCC-3 can be considered a tumor-preventing gene.


The EMBO Journal | 1994

Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23.

Chikahide Masutani; Kaoru Sugasawa; J Yanagisawa; T Sonoyama; M Ui; T Enomoto; K Takio; Kiyoji Tanaka; P J van der Spek; D. Bootsma

Complementation group C of xeroderma pigmentosum (XP) represents one of the most common forms of this cancer‐prone DNA repair syndrome. The primary defect is located in the subpathway of the nucleotide excision repair system, dealing with the removal of lesions from the non‐transcribing sequences (‘genome‐overall’ repair). Here we report the purification to homogeneity and subsequent cDNA cloning of a repair complex by in vitro complementation of the XP‐C defect in a cell‐free repair system containing UV‐damaged SV40 minichromosomes. The complex has a high affinity for ssDNA and consists of two tightly associated proteins of 125 and 58 kDa. The 125 kDa subunit is an N‐terminally extended version of previously reported XPCC gene product which is thought to represent the human homologue of the Saccharomyces cerevisiae repair gene RAD4. The 58 kDa species turned out to be a human homologue of yeast RAD23. Unexpectedly, a second human counterpart of RAD23 was identified. All RAD23 derivatives share a ubiquitin‐like N‐terminus. The nature of the XP‐C defect implies that the complex exerts a unique function in the genome‐overall repair pathway which is important for prevention of skin cancer.


Cell | 1997

Defective Transcription-Coupled Repair in Cockayne Syndrome B Mice Is Associated with Skin Cancer Predisposition

Gijsbertus T. J. van der Horst; Harry van Steeg; Rob J. W. Berg; Alain J. van Gool; Jan de Wit; Geert Weeda; Hans Morreau; Rudolf B. Beems; Coen F. van Kreijl; Frank R. de Gruijl; D. Bootsma; Jan H.J. Hoeijmakers

A mouse model for the nucleotide excision repair disorder Cockayne syndrome (CS) was generated by mimicking a truncation in the CSB(ERCC6) gene of a CS-B patient. CSB-deficient mice exhibit all of the CS repair characteristics: ultraviolet (UV) sensitivity, inactivation of transcription-coupled repair, unaffected global genome repair, and inability to resume RNA synthesis after UV exposure. Other CS features thought to involve the functioning of basal transcription/repair factor TFIIH, such as growth failure and neurologic dysfunction, are present in mild form. In contrast to the human syndrome, CSB-deficient mice show increased susceptibility to skin cancer. Our results demonstrate that transcription-coupled repair of UV-induced cyclobutane pyrimidine dimers contributes to the prevention of carcinogenesis in mice. Further, they suggest that the lack of cancer predisposition in CS patients is attributable to a global genome repair process that in humans is more effective than in rodents.


Cell | 1986

Molecular characterization of the human excision repair gene ERCC-1: cDNA cloning and amino acid homology with the yeast DNA repair gene RAD10

Marcel van Duin; Jan de Wit; Hanny Odijk; A. Westerveld; Akira Yasui; Marcel H. M. Koken; Jan H.J. Hoeijmakers; D. Bootsma

The human excision repair gene ERCC-1 was cloned after DNA mediated gene transfer to the CHO mutant 43-3B, which is sensitive to ultraviolet light and mitomycin-C. We describe the cloning and sequence analysis of the ERCC-1 cDNA and partial characterization of the gene. ERCC-1 has a size of 15 kb and is located on human chromosome 19. The ERCC-1 precursor RNA is subject to alternative splicing of an internal 72 bp coding exon. Only the cDNA of the larger 1.1 kb transcript, encoding a protein of 297 amino acids, was able to confer resistance to ultraviolet light and mitomycin-C on 43-3B cells. Significant amino acid sequence homology was found between the ERCC-1 gene product and the yeast excision repair protein RAD10. The most homologous region displayed structural homology with DNA binding domains of various polypeptides.


The EMBO Journal | 1997

The Cockayne syndrome B protein, involved in transcription-coupled DNA repair, resides in an RNA polymerase II-containing complex

Alain J. van Gool; Elisabetta Citterio; Suzanne Rademakers; Roselinde van Os; Wim Vermeulen; Angelos Constantinou; Jean-Marc Egly; D. Bootsma; Jan H.J. Hoeijmakers

Transcription‐coupled repair (TCR), a subpathway of nucleotide excision repair (NER) defective in Cockayne syndrome A and B (CSA and CSB), is responsible for the preferential removal of DNA lesions from the transcribed strand of active genes, permitting rapid resumption of blocked transcription. Here we demonstrate by microinjection of antibodies against CSB and CSA gene products into living primary fibroblasts, that both proteins are required for TCR and for recovery of RNA synthesis after UV damage in vivo but not for basal transcription itself. Furthermore, immunodepletion showed that CSB is not required for in vitro NER or transcription. Its central role in TCR suggests that CSB interacts with other repair and transcription proteins. Gel filtration of repair‐ and transcription‐competent whole cell extracts provided evidence that CSB and CSA are part of large complexes of different sizes. Unexpectedly, there was no detectable association of CSB with several candidate NER and transcription proteins. However, a minor but significant portion (10–15%) of RNA polymerase II was found to be tightly associated with CSB. We conclude that within cell‐free extracts, CSB is not stably associated with the majority of core NER or transcription components, but is part of a distinct complex involving RNA polymerase II. These findings suggest that CSB is implicated in, but not essential for, transcription, and support the idea that Cockayne syndrome is due to a combined repair and transcription deficiency.

Collaboration


Dive into the D. Bootsma's collaboration.

Top Co-Authors

Avatar

Jan H.J. Hoeijmakers

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

A. Westerveld

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Wim Vermeulen

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

W. Keijzer

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Geert Weeda

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M.A. Ferguson-Smith

Royal Hospital for Sick Children

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge