Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Geert Weeda is active.

Publication


Featured researches published by Geert Weeda.


Nature Genetics | 1995

P53 modulation of TFIIH-associated nucleotide excision repair activity

Xin Wei Wang; Heidi Yeh; L. Schaeffer; R. Roy; V. Moncollin; Jean-Marc Egly; Zhifeng Wang; Errol C. Friedberg; Michele K. Evans; B.G. Taffe; Vilhelm A. Bohr; Geert Weeda; Jan H.J. Hoeijmakers; Kathleen Forrester; Curtis C. Harris

p53 has pleiotropic functions including control of genomic plasticity and integrity. Here we report that p53 can bind to several transcription factor IIH–associated factors, including transcription–repair factors, XPD (Rad3) and XPB, as well as CSB involved in strand–specific DNA repair, via its C–terminal domain. We also found that wild–type, but not Arg273His mutant p53 inhibits XPD (Rad3) and XPB DNA helicase activities. Moreover, repair of UV–induced dimers is slower in Li–Fraumeni syndrome cells (heterozygote p53 mutant) than in normal human cells. Our findings indicate that p53 may play a direct role in modulating nucleotide excision repair pathways.


The EMBO Journal | 1994

The ERCC2/DNA repair protein is associated with the class II BTF2/TFIIH transcription factor.

Laurent Schaeffer; Vincent Moncollin; Richard Roy; Adrien Staub; Mauro Mezzina; Alain Sarasin; Geert Weeda; Jan H.J. Hoeijmakers; Jean-Marc Egly

ERCC2 is involved in the DNA repair syndrome xeroderma pigmentosum (XP) group D and was found to copurify with the RNA polymerase II (B) transcription factor BTF2/TFIIH that possesses a bidirectional helicase activity. Antibodies directed towards the 89 kDa (ERCC3) or the p62 subunit of BTF2 are able to either immunoprecipitate ERCC2 or shift the polypeptide in a glycerol gradient. Conversely, an antibody directed towards ERCC2 also retains or shifts BTF2. ERCC2 could be resolved from the other characterized components of BTF2 upon salt treatment, while its readdition enhanced BTF2 transcription activity. ERCC2, ERCC3 and p44 are three repair proteins found in association with BTF2. Two of them, ERCC2 and ERCC3, are responsible for atypical forms of XP disorders which confer a high predisposition to skin cancer. This includes clinical features that lack an adequate rationalization on the basis of nucleotide excision repair (NER) deficiency but which may now be explained better in terms of a partial transcription deficiency.


Cell | 1990

A Presumed DNA Helicase Encoded by ERCC-3 Is Involved in the Human Repair Disorders Xeroderma Pigmentosum and Cockayne's Syndrome

Geert Weeda; Reinier C.A. van Ham; Wim Vermeulen; D. Bootsma; Alex J. van der Eb; Jan H.J. Hoeijmakers

The human gene ERCC-3 specifically corrects the defect in an early step of the DNA excision repair pathway of UV-sensitive rodent mutants of complementation group 3. The predicted 782 amino acid ERCC-3 protein harbors putative nucleotide, chromatin, and helix-turn-helix DNA binding domains and seven consecutive motifs conserved between two superfamilies of DNA and RNA helicases, strongly suggesting that it is a DNA repair helicase. ERCC-3-deficient rodent mutants phenotypically resemble the human repair syndrome xeroderma pigmentosum (XP). ERCC-3 specifically corrects the excision defect in one of the eight XP complementation groups, XP-B. The sole XP-B patient presents an exceptional conjunction of two rare repair disorders: XP and Cockaynes syndrome. This patients DNA contains a C----A transversion in the splice acceptor sequence of the last intron of the only ERCC-3 allele that is detectably expressed, leading to a 4 bp insertion in the mRNA and an inactivating frameshift in the C-terminus of the protein. Because XP is associated with predisposition to skin cancer, ERCC-3 can be considered a tumor-preventing gene.


Cell | 1997

Defective Transcription-Coupled Repair in Cockayne Syndrome B Mice Is Associated with Skin Cancer Predisposition

Gijsbertus T. J. van der Horst; Harry van Steeg; Rob J. W. Berg; Alain J. van Gool; Jan de Wit; Geert Weeda; Hans Morreau; Rudolf B. Beems; Coen F. van Kreijl; Frank R. de Gruijl; D. Bootsma; Jan H.J. Hoeijmakers

A mouse model for the nucleotide excision repair disorder Cockayne syndrome (CS) was generated by mimicking a truncation in the CSB(ERCC6) gene of a CS-B patient. CSB-deficient mice exhibit all of the CS repair characteristics: ultraviolet (UV) sensitivity, inactivation of transcription-coupled repair, unaffected global genome repair, and inability to resume RNA synthesis after UV exposure. Other CS features thought to involve the functioning of basal transcription/repair factor TFIIH, such as growth failure and neurologic dysfunction, are present in mild form. In contrast to the human syndrome, CSB-deficient mice show increased susceptibility to skin cancer. Our results demonstrate that transcription-coupled repair of UV-induced cyclobutane pyrimidine dimers contributes to the prevention of carcinogenesis in mice. Further, they suggest that the lack of cancer predisposition in CS patients is attributable to a global genome repair process that in humans is more effective than in rodents.


The EMBO Journal | 1985

Adenosine deaminase: characterization and expression of a gene with a remarkable promoter.

Domenico Valerio; M.G.C. Duyvesteyn; B.M.M. Dekker; Geert Weeda; Th.M. Berkvens; L. Van Der Voorn; H. van Ormondt; A.J. van der Eb

Cosmid clones containing the gene for human adenosine deaminase (ADA) were isolated. The gene is 32 kb long and split into 12 exons. The exact sizes and boundaries of the exon blocks including the transcription start sites were determined. The sequence upstream from this cap site lacks the TATA and CAAT boxes characteristic for eukaryotic promoters. Nevertheless, we have shown in a functional assay that a stretch of 135 bp immediately preceding the cap site has promoter activity. This 135‐bp DNA fragment is extremely rich in G/C residues (82%). It contains three inverted repeats that allow the formation of cruciform structures, a 10‐bp and a 16‐bp direct repeat and five G/C‐rich motifs (GGGCGGG) disposed in a strikingly symmetrical fashion. Some of these structural features were also found in the promoter region of other genes and we discuss their possible function. Knowledge of the exact positions of the intron‐exon boundaries allowed us to propose models for abnormal RNA processing that occurs in previously investigated ADA‐deficient cell lines.


Molecular Cell | 1998

A Mouse Model for the Basal Transcription/DNA Repair Syndrome Trichothiodystrophy

Jan de Boer; Jan de Wit; Harry van Steeg; Rob J. W. Berg; Hans Morreau; Pim Visser; Alan R. Lehmann; Marinus Duran; Jane H.J. Hoeijmakers; Geert Weeda

The sun-sensitive form of the severe neurodevelopmental, brittle hair disorder trichothiodystrophy (TTD) is caused by point mutations in the essential XPB and XPD helicase subunits of the dual functional DNA repair/basal transcription factor TFIIH. The phenotype is hypothesized to be in part derived from a nucleotide excision repair defect and in part from a subtle basal transcription deficiency accounting for the nonrepair TTD features. Using a novel gene-targeting strategy, we have mimicked the causative XPD point mutation of a TTD patient in the mouse. TTD mice reflect to a remarkable extent the human disorder, including brittle hair, developmental abnormalities, reduced life span, UV sensitivity, and skin abnormalities. The cutaneous symptoms are associated with reduced transcription of a skin-specific gene strongly supporting the concept of TTD as a human disease due to inborn defects in basal transcription and DNA repair.


The EMBO Journal | 2001

The structure-specific endonuclease Ercc1-Xpf is required for targeted gene replacement in embryonic stem cells

Laura J. Niedernhofer; Jeroen Essers; Geert Weeda; Berna Beverloo; Jan de Wit; Manja Muijtjens; Hanny Odijk; Jan H.J. Hoeijmakers; Roland Kanaar

The Ercc1—Xpf heterodimer, a highly conserved structure‐specific endonuclease, functions in multiple DNA repair pathways that are pivotal for maintaining genome stability, including nucleotide excision repair, interstrand crosslink repair and homologous recombination. Ercc1—Xpf incises double‐stranded DNA at double‐strand/single‐strand junctions, making it an ideal enzyme for processing DNA structures that contain partially unwound strands. Here we demonstrate that although Ercc1 is dispensable for recombination between sister chromatids, it is essential for targeted gene replacement in mouse embryonic stem cells. Surprisingly, the role of Ercc1—Xpf in gene targeting is distinct from its previously identified role in removing nonhomologous termini from recombination intermediates because it was required irrespective of whether the ends of the DNA targeting constructs were heterologous or homologous to the genomic locus. Our observations have implications for the mechanism of gene targeting in mammalian cells and define a new role for Ercc1—Xpf in mammalian homologous recombination. We propose a model for the mechanism of targeted gene replacement that invokes a role for Ercc1—Xpf in making the recipient genomic locus receptive for gene replacement.


Journal of Biological Chemistry | 2000

TFIIH with inactive XPD helicase functions in transcription initiation but is defective in DNA repair

G. Sebastiaan Winkler; Sofia J. Araújo; Ulrike Fiedler; Wim Vermeulen; Frédéric Coin; Jean-Marc Egly; Jan H.J. Hoeijmakers; Richard D. Wood; H. Th. Marc Timmers; Geert Weeda

TFIIH is a multisubunit protein complex involved in RNA polymerase II transcription and nucleotide excision repair, which removes a wide variety of DNA lesions including UV-induced photoproducts. Mutations in the DNA-dependent ATPase/helicase subunits of TFIIH, XPB and XPD, are associated with three inherited syndromes as follows: xeroderma pigmentosum with or without Cockayne syndrome and trichothiodystrophy. By using epitope-tagged XPD we purified mammalian TFIIH carrying a wild type or an active-site mutant XPD subunit. Contrary to XPB, XPD helicase activity was dispensable for in vitro transcription, catalytic formation of trinucleotide transcripts, and promoter opening. Moreover, in contrast to XPB, microinjection of mutant XPD cDNA did not interfere with in vivo transcription. These data show directly that XPD activity is not required for transcription. However, during DNA repair, neither 5′ nor 3′ incisions in defined positions around a DNA adduct were detected in the presence of TFIIH containing inactive XPD, although substantial damage-dependent DNA synthesis was induced by the presence of mutant XPD both in cells and cell extracts. The aberrant damage-dependent DNA synthesis caused by the mutant XPD does not lead to effective repair, consistent with the discrepancy between repair synthesis and survival in cells from a number of XP-D patients.


Molecular and Cellular Biology | 1990

Molecular cloning and biological characterization of the human excision repair gene ERCC-3.

Geert Weeda; R. C. A. Van Ham; R. Masurel; A. Westerveld; Hanny Odijk; J. de Wit; D. Bootsma; A.J. van der Eb; J.H.J. Hoeijmakers

In this report we present the cloning, partial characterization, and preliminary studies of the biological activity of a human gene, designated ERCC-3, involved in early steps of the nucleotide excision repair pathway. The gene was cloned after genomic DNA transfection of human (HeLa) chromosomal DNA together with dominant marker pSV3gptH to the UV-sensitive, incision-defective Chinese hamster ovary (CHO) mutant 27-1. This mutant belongs to complementation group 3 of repair-deficient rodent mutants. After selection of UV-resistant primary and secondary 27-1 transformants, human sequences associated with the induced UV resistance were rescued in cosmids from the DNA of a secondary transformant by using a linked dominant marker copy and human repetitive DNA as probes. From coinheritance analysis of the ERCC-3 region in independent transformants, we deduce that the gene has a size of 35 to 45 kilobases, of which one essential segment has so far been refractory to cloning. Conserved unique human sequences hybridizing to a 3.0-kilobase mRNA were used to isolate apparently full-length cDNA clones. Upon transfection to 27-1 cells, the ERCC-3 cDNA, inserted in a mammalian expression vector, induced specific and (virtually) complete correction of the UV sensitivity and unscheduled DNA synthesis of mutants of complementation group 3 with very high efficiency. Mutant 27-1 is, unlike other mutants of complementation group 3, also very sensitive toward small alkylating agents. This unique property of the mutant is not corrected by introduction of the ERCC-3 cDNA, indicating that it may be caused by an independent second mutation in another repair function. By hybridization to DNA of a human x rodent hybrid cell panel, the ERCC-3 gene was assigned to chromosome 2, in agreement with data based on cell fusion (L. H. Thompson, A. V. Carrano, K. Sato, E. P. Salazar, B. F. White, S. A. Stewart, J. L. Minkler, and M. J. Siciliano, Somat. Cell. Mol. Genet. 13:539-551, 1987).


The EMBO Journal | 1994

Correction of xeroderma pigmentosum repair defect by basal transcription factor BTF2/TFIIH.

A. J. Van Vuuren; Wim Vermeulen; Libin Ma; Geert Weeda; E. Appeldoorn; Nicolaas G. J. Jaspers; A.J. van der Eb; D. Bootsma; J.H.J. Hoeijmakers; S. Humbert

ERCC3 was initially identified as a gene correcting the nucleotide excision repair (NER) defect of xeroderma pigmentosum complementation group B (XP‐B). The recent finding that its gene product is identical to the p89 subunit of basal transcription factor BTF2(TFIIH), opened the possibility that it is not directly involved in NER but that it regulates the transcription of one or more NER genes. Using an in vivo microinjection repair assay and an in vitro NER system based on cell‐free extracts we demonstrate that ERCC3 in BTF2 is directly implicated in excision repair. Antibody depletion experiments support the idea that the p62 BTF2 subunit and perhaps the entire transcription factor function in NER. Microinjection experiments suggest that exogenous ERCC3 can exchange with ERCC3 subunits in the complex. Expression of a dominant negative K436‐‐>R ERCC3 mutant, expected to have lost all helicase activity, completely abrogates NER and transcription and concomitantly induces a dramatic chromatin collapse. These findings establish the role of ERCC3 and probably the entire BTF2 complex in transcription in vivo which was hitherto only demonstrated in vitro. The results strongly suggest that transcription itself is a critical component for maintenance of chromatin structure. The remarkable dual role of ERCC3 in NER and transcription provides a clue in understanding the complex clinical features of some inherited repair syndromes.

Collaboration


Dive into the Geert Weeda's collaboration.

Top Co-Authors

Avatar

Jan H.J. Hoeijmakers

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

D. Bootsma

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Wim Vermeulen

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Jan de Wit

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Jan de Boer

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harry van Steeg

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Christine Troelstra

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Ingrid Donker

Erasmus University Rotterdam

View shared research outputs
Researchain Logo
Decentralizing Knowledge