Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. Brunner is active.

Publication


Featured researches published by D. Brunner.


Nuclear Fusion | 2012

Tungsten nano-tendril growth in the Alcator C-Mod divertor

G.M. Wright; D. Brunner; M.J. Baldwin; R.P. Doerner; B. LaBombard; B. Lipschultz; J. L. Terry; D.G. Whyte

Growth of tungsten nano-tendrils (?fuzz?) has been observed for the first time in the divertor region of a high-power density tokamak experiment. After 14 consecutive helium L-mode discharges in Alcator C-Mod, the tip of a tungsten Langmuir probe at the outer strike point was fully covered with a layer of nano-tendrils. The thickness of the individual nano-tendrils (50?100?nm) and the depth of the layer (600???150?nm) are consistent with observations from experiments on linear plasma devices. The observation of tungsten fuzz in a tokamak may have important implications for material erosion, dust formation, divertor lifetime and tokamak operations in next-step devices.


Physics of Plasmas | 2011

Scaling of the power exhaust channel in Alcator C-Mod

B. LaBombard; J. L. Terry; J.W. Hughes; D. Brunner; J. Payne; Matthew Reinke; I. Cziegler; R. Granetz; M. Greenwald; Ian H. Hutchinson; J. Irby; Y. Lin; B. Lipschultz; Y. Ma; E. Marmar; William L. Rowan; N. Tsujii; G. Wallace; D.G. Whyte; S. M. Wolfe; S.J. Wukitch; G. A. Wurden; Alcator C-Mod Team

Parametric dependences of the heat flux footprint on the outer divertor target plate are explored in EDA H-mode and ohmic L-mode plasmas over a wide range of parameters with attached plasma conditions. Heat flux profile shapes are found to be independent of toroidal field strength, independent of power flow along magnetic field lines and insensitive to x-point topology (single-null versus double-null). The magnitudes and widths closely follow that of the “upstream” pressure profile, which are correlated to plasma thermal energy content and plasma current. Heat flux decay lengths near the strike-point in H- and L-mode plasmas scale approximately with the inverse of plasma current, with a diminished dependence at high collisionality in L-mode. Consistent with previous studies, pressure gradients in the boundary scale with plasma current squared, holding the magnetohydrodynamic ballooning parameter approximately invariant at fixed collisionality—strong evidence that critical-gradient transport physics plays ...


Plasma Physics and Controlled Fusion | 2013

Measurements of ion cyclotron parametric decay of lower hybrid waves at the high-field side of Alcator C-Mod

S. G. Baek; R.R. Parker; S. Shiraiwa; G. Wallace; P.T. Bonoli; D. Brunner; I C Faust; A. Hubbard; B. LaBombard; M. Porkolab

Ion cyclotron parametric decay instability (PDI) of lower hybrid (LH) waves is surveyed using edge Langmuir probes on the Alcator C-Mod tokamak. The measurement is carried out simultaneously at the high-field side (HFS) and low-field side (LFS) mid-plane of the tokamak, as well as in the outer divertor region. Different LH spectra are observed depending on the location of the probes and magnetic configuration in L-mode plasmas, with drift direction downward. In lower single null (LSN) plasmas, strong ion cyclotron PDI occurring at the HFS is observed for the first time. This instability is characterized by a frequency separation in sidebands corresponding to the ion cyclotron frequency (ωci) near the HFS scrape-off layer and develops with threshold-like behavior as density increases. In inner wall limited (IWL) plasmas, this HFS instability shows a higher density threshold compared with that in LSN plasmas. The pump width becomes broadened even in the absence of the sidebands. In upper single null plasmas with similar plasma parameters, ion cyclotron PDI sidebands have a frequency separation corresponding to ωci near the LFS and are weaker than those observed in the LSN and IWL plasmas. Correlation between the onset of ion cyclotron PDI and the observed loss of lower hybrid current drive efficiency (Wallace et al 2012 Phys. Plasmas 19 062505) is discussed.


Physics of Plasmas | 2011

High confinement/high radiated power H-mode experiments in Alcator C-Mod and consequences for International Thermonuclear Experimental Reactor (ITER) QDT = 10 operationa)

A. Loarte; J.W. Hughes; M.L. Reinke; J. L. Terry; B. LaBombard; D. Brunner; M. Greenwald; B. Lipschultz; Y. Ma; S.J. Wukitch; S. M. Wolfe

Experiments in Alcator C-Mod in (Enhanced D-alpha) EDA H-modes with extrinsic impurity seeding (N2, Ne, and Ar) have demonstrated a direct correlation between plasma energy confinement and edge power flow, achieving values of H98 ≥ 1 for edge power flows only marginally exceeding the scaled power for access to H-mode confinement in these conditions. For lower Z impurity seeding (N2 and Ne), plasmas with high energy confinement are obtained with a radiative power fraction of 85% or larger and a reduction of the peak heat flux at the divertor by more than a factor of 5 compared to similar attached conditions. The H-mode plasmas thus achieved in Alcator C-Mod meet or exceed the requirements both in terms of divertor heat flux handling and energy confinement for ITER QDT = 10 operation and with an edge power flow only marginally above the H-mode threshold power (by 1.0–1.4) as expected in ITER.


Review of Scientific Instruments | 2010

Divertor IR thermography on Alcator C-Mod.

J. L. Terry; B. LaBombard; D. Brunner; J. Payne; G. A. Wurden

Alcator C-Mod is a particularly challenging environment for thermography. It presents issues that will similarly face ITER, including low-emissivity metal targets, low-Z surface films, and closed divertor geometry. In order to make measurements of the incident divertor heat flux using IR thermography, the C-Mod divertor has been modified and instrumented. A 6° toroidal sector has been given a 2° toroidal ramp in order to eliminate magnetic field-line shadowing by imperfectly aligned divertor tiles. This sector is viewed from above by a toroidally displaced IR camera and is instrumented with thermocouples and calorimeters. The camera provides time histories of surface temperatures that are used to compute incident heat-flux profiles. The camera sensitivity is calibrated in situ using the embedded thermocouples, thus correcting for changes and nonuniformities in surface emissivity due to surface coatings.


Physics of Plasmas | 2014

New insights on boundary plasma turbulence and the quasi-coherent mode in Alcator C-Mod using a Mirror Langmuir Probea)

B. LaBombard; T. Golfinopoulos; J. L. Terry; D. Brunner; E.M. Davis; M. Greenwald; J.W. Hughes; Alcator C-Mod Team

A new “Mirror Langmuir Probe” diagnostic, combined with a double-coil scanning magnetic probe, is used to interrogate Alcator C-Mods quasi-coherent mode (QCM) with unprecedented detail. In ohmic EDA H-modes, the QCM is found to reside in a region of positive radial electric field, with a radial width (∼3 mm) that spans open and closed field line regions. Large amplitude, in-phase sinusoidal bursts (∼100 kHz) in density, electron temperature, and plasma potential are observed, with potential lagging density by ∼16°, producing an outward radial transport velocity of ∼10 m/s. Mode propagation corresponds to the sum of local E × B and electron diamagnetic drift velocities. Poloidal magnetic field fluctuations project to current filaments carrying peak current densities of ∼25 A/cm2. An evaluation of parallel electron force balance (Ohms law) over a fluctuation cycle indicates a significant electromotive component. Interchange drive is also a contributor in the current continuity (vorticity) equation. Thus, ...


Review of Scientific Instruments | 2012

Surface thermocouples for measurement of pulsed heat flux in the divertor of the Alcator C-Mod tokamak

D. Brunner; B. LaBombard

A novel set of thermocouple sensors has been developed to measure heat fluxes arriving at divertor surfaces in the Alcator C-Mod tokamak, a magnetic confinement fusion experiment. These sensors operate in direct contact with the divertor plasma, which deposits heat fluxes in excess of ~10 MW/m(2) over an ~1 s pulse. Thermoelectric EMF signals are produced across a non-standard bimetallic junction: a 50 μm thick 74% tungsten-26% rhenium ribbon embedded in a 6.35 mm diameter molybdenum cylinder. The unique coaxial geometry of the sensor combined with its single-point electrical ground contact minimizes interference from the plasma/magnetic environment. Incident heat fluxes are inferred from surface temperature evolution via a 1D thermal heat transport model. For an incident heat flux of 10 MW/m(2), surface temperatures rise ~1000 °C/s, corresponding to a heat flux flowing along the local magnetic field of ~200 MW/m(2). Separate calorimeter sensors are used to independently confirm the derived heat fluxes by comparing total energies deposited during a plasma pulse. Langmuir probes in close proximity to the surface thermocouples are used to test plasma-sheath heat transmission theory and to identify potential sources of discrepancies among physical models.


Physics of Plasmas | 2014

20 years of research on the Alcator C-Mod tokamak

M. Greenwald; A. Bader; S. G. Baek; M. Bakhtiari; Harold Barnard; W. Beck; W. Bergerson; I.O. Bespamyatnov; P.T. Bonoli; D. L. Brower; D. Brunner; W. Burke; J. Candy; M. Churchill; I. Cziegler; A. Diallo; A. Dominguez; B.P. Duval; E. Edlund; P. Ennever; D. Ernst; I. Faust; C. Fiore; T. Fredian; O.E. Garcia; C. Gao; J.A. Goetz; T. Golfinopoulos; R. Granetz; O. Grulke

The object of this review is to summarize the achievements of research on the Alcator C-Mod tokamak [Hutchinson et al., Phys. Plasmas 1, 1511 (1994) and Marmar, Fusion Sci. Technol. 51, 261 (2007)] and to place that research in the context of the quest for practical fusion energy. C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since it began operation in 1993, contributing data that extends tests of critical physical models into new parameter ranges and into new regimes. Using only high-power radio frequency (RF) waves for heating and current drive with innovative launching structures, C-Mod operates routinely at reactor level power densities and achieves plasma pressures higher than any other toroidal confinement device. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing components—approaches subsequently adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated the critical role of cross-field transport in divertor operation, edge flows and the tokamak density limit. C-Mod developed the I-mode and the Enhanced Dα H-mode regimes, which have high performance without large edge localized modes and with pedestal transport self-regulated by short-wavelength electromagnetic waves. C-Mod has carried out pioneering studies of intrinsic rotation and demonstrated that self-generated flow shear can be strong enough in some cases to significantly modify transport. C-Mod made the first quantitative link between the pedestal temperature and the H-modes performance, showing that the observed self-similar temperature profiles were consistent with critical-gradient-length theories and followed up with quantitative tests of nonlinear gyrokinetic models. RF research highlights include direct experimental observation of ion cyclotron range of frequency (ICRF) mode-conversion, ICRF flow drive, demonstration of lower-hybrid current drive at ITER-like densities and fields and, using a set of novel diagnostics, extensive validation of advanced RF codes. Disruption studies on C-Mod provided the first observation of non-axisymmetric halo currents and non-axisymmetric radiation in mitigated disruptions. A summary of important achievements and discoveries are included.


Nuclear Fusion | 2011

Power requirements for superior H-mode confinement on Alcator C-Mod: Experiments in support of ITER

J.W. Hughes; A. Loarte; M.L. Reinke; J. L. Terry; D. Brunner; M. Greenwald; Amanda E. Hubbard; B. LaBombard; B. Lipschultz; Y. Ma; Scot A. Wolfe; S.J. Wukitch

Power requirements for maintaining sufficiently high confinement (i.e. normalized energy confinement time H98 ? 1) in H-mode and its relation to H-mode threshold power scaling, Pth, are of critical importance to ITER. In order to better characterize these power requirements, recent experiments on the Alcator C-Mod tokamak have investigated H-mode properties, including the edge pedestal and global confinement, over a range of input powers near and above Pth. In addition, we have examined the compatibility of impurity seeding with high performance operation, and the influence of plasma radiation and its spatial distribution on performance. Experiments were performed at 5.4?T at ITER relevant densities, utilizing bulk metal plasma facing surfaces and an ion cyclotron range of frequency waves for auxiliary heating. Input power was scanned both in stationary enhanced D? (EDA) H-modes with no large edge localized modes (ELMs) and in ELMy H-modes in order to relate the resulting pedestal and confinement to the amount of power flowing into the scrape-off layer, Pnet, and also to the divertor targets. In both EDA and ELMy H-mode, energy confinement is generally good, with H98 near unity. As Pnet is reduced to levels approaching that in L-mode, pedestal temperature diminishes significantly and normalized confinement time drops. By seeding with low-Z impurities, such as Ne and N2, high total radiated power fractions are possible, along with substantial reductions in divertor heat flux (>4?), all while maintaining H98 ~ 1. When the power radiated from the confined versus unconfined plasma is examined, pedestal and confinement properties are clearly seen to be an increasing function of Pnet, helping to unify the results with those from unseeded H-modes. This provides increased confidence that the power flow across the separatrix is the correct physics basis for ITER extrapolation. The experiments show that Pnet/Pth of one or greater is likely to lead to H98 ? 1 operation, and also that such a condition can be made compatible with a low-Z radiative impurity solution for reducing divertor heat loads to levels acceptable for ITER.


Nuclear Fusion | 2013

Effects of LHRF on toroidal rotation in Alcator C-Mod plasmas

J. E. Rice; Y. Podpaly; Matthew Reinke; C. Gao; S. Shiraiwa; J. L. Terry; C. Theiler; G. Wallace; P.T. Bonoli; D. Brunner; R.M. Churchill; I. Cziegler; L. Delgado-Aparicio; P. H. Diamond; I. Faust; Nathaniel J. Fisch; R. Granetz; M. Greenwald; Amanda E. Hubbard; J.W. Hughes; Ian H. Hutchinson; James H. Irby; Jungpyo Lee; Y. Lin; E. Marmar; R. Mumgaard; R.R. Parker; S.D. Scott; J. Walk; S.M. Wolfe

Application of lower hybrid range of frequencies (LHRF) waves can induce both co- and counter-current directed changes in toroidal rotation in Alcator C-Mod plasmas, depending on the target plasma current, electron density, confinement regime and magnetic shear. For ohmic L-mode discharges with good core LH wave absorption, and significant current drive at a fixed LH power near 0.8 MW, the interior (r/a q95/11.5, and in the co-current direction if ne(1020 m−3) 1, indicating a good correlation with driven current fraction, unifying the results observed on various tokamaks. For high density (ne ≥ 1.2 × 1020 m−3) L-mode target discharges, where core LH wave absorption is low, the rotation change is in the co-current direction, but evolves on a shorter momentum transport time scale, and is seen across the entire spatial profile. For H-mode target plasmas, both co- and counter-current direction increments have been observed with LHRF. The H-mode co-rotation is correlated with the pedestal temperature gradient, which itself is enhanced by the LH waves absorbed in the plasma periphery. The H-mode counter-rotation increment, a flattening of the peaked velocity profile in the core, is consistent with a reduction in the momentum pinch correlated with a steepening of the core density profile. Most of these rotation changes must be due to indirect transport effects of LH waves on various parameters, which modify the momentum flux.

Collaboration


Dive into the D. Brunner's collaboration.

Top Co-Authors

Avatar

B. LaBombard

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

J. L. Terry

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

D.G. Whyte

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

A.Q. Kuang

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

J.W. Hughes

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

S.J. Wukitch

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Wallace

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

I. Faust

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

M.L. Reinke

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge