Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. Byram is active.

Publication


Featured researches published by D. Byram.


Physical Review Letters | 2014

First results from the LUX dark matter experiment at the Sanford Underground Research Facility

X. Bai; J. Balajthy; S. Bedikian; E. Bernard; A. Bernstein; A. Bolozdynya; A. Bradley; D. Byram; C. Chan; C. Chiller; K. Clark; T. Coey; A. Currie; A. Curioni; S. Dazeley; L. de Viveiros; A. Dobi; J. Dobson; E. Druszkiewicz; S. Fiorucci; C. Flores; C. Ghag; M. Hanhardt; M. Horn; M. Ihm; L. Kastens; K. Kazkaz; R. Knoche; S. Kyre; R. Lander

The Large Underground Xenon (LUX) experiment is a dual-phase xenon time-projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota). The LUX cryostat was filled for the first time in the underground laboratory in February 2013. We report results of the first WIMP search data set, taken during the period from April to August 2013, presenting the analysis of 85.3 live days of data with a fiducial volume of 118 kg. A profile-likelihood analysis technique shows our data to be consistent with the background-only hypothesis, allowing 90% confidence limits to be set on spin-independent WIMP-nucleon elastic scattering with a minimum upper limit on the cross section of 7.6 × 10(-46) cm(2) at a WIMP mass of 33 GeV/c(2). We find that the LUX data are in disagreement with low-mass WIMP signal interpretations of the results from several recent direct detection experiments.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2013

The Large Underground Xenon (LUX) Experiment

D. S. Akerib; X. Bai; S. Bedikian; E. Bernard; A. Bernstein; A. Bolozdynya; A. Bradley; D. Byram; S. B. Cahn; C. Camp; M.C. Carmona-Benitez; D. Carr; J.J. Chapman; A.A. Chiller; C. Chiller; K. Clark; T. Classen; T. Coffey; A. Curioni; E. Dahl; S. Dazeley; L. de Viveiros; A. Dobi; E. Dragowsky; E. Druszkiewicz; B. Edwards; C.H. Faham; S. Fiorucci; R.J. Gaitskell; K.R. Gibson

The Large Underground Xenon (LUX) collaboration has designed and constructed a dual-phase xenon detector, in order to conduct a search for Weakly Interacting Massive Particles (WIMPs), a leading dark matter candidate. The goal of the LUX detector is to clearly detect (or exclude) WIMPS with a spin independent cross-section per nucleon of 2×10-46cm2, equivalent to ∼1event/100kg/month in the inner 100-kg fiducial volume (FV) of the 370-kg detector. The overall background goals are set to have <1 background events characterized as possible WIMPs in the FV in 300 days of running. This paper describes the design and construction of the LUX detector.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2013

An Ultra-Low Background PMT for Liquid Xenon Detectors

D. S. Akerib; X. Bai; E. Bernard; A. Bernstein; A. Bradley; D. Byram; S. B. Cahn; M.C. Carmona-Benitez; D. Carr; J.J. Chapman; K. Clark; T. Coffey; B. Edwards; L. de Viveiros; M. R. Dragowsky; E. Druszkiewicz; C.H. Faham; S. Fiorucci; R.J. Gaitskell; K.R. Gibson; C. Hall; M. Hanhardt; B. Holbrook; M. Ihm; R. G. Jacobsen; L. Kastens; K. Kazkaz; N.A. Larsen; C. Lee; A. Lindote

Results are presented from radioactivity screening of two models of photomultiplier tubes designed for use in current and future liquid xenon experiments. The Hamamatsu 5.6 cm diameter R8778 PMT, used in the LUX dark matter experiment, has yielded a positive detection of four common radioactive isotopes: 238U, 232Th, 40K, and 60Co. Screening of LUX materials has rendered backgrounds from other detector materials subdominant to the R8778 contribution. A prototype Hamamatsu 7.6 cm diameter R11410 MOD PMT has also been screened, with benchmark isotope counts measured at <0.4 238U/<0.3 232Th/<8.3 40K/2.0±0.2 60Co mBq/PMT. This represents a large reduction, equal to a change of ×124 238U/×19 232Th/×18 40K per PMT, between R8778 and R11410 MOD, concurrent with a doubling of the photocathode surface area (4.5–6.4 cm diameter). 60Co measurements are comparable between the PMTs, but can be significantly reduced in future R11410 MOD units through further material selection. Assuming PMT activity equal to the measured 90% upper limits, Monte Carlo estimates indicate that replacement of R8778 PMTs with R11410 MOD PMTs will change LUX PMT electron recoil background contributions by a factor of ×125 after further material selection for 60Co reduction, and nuclear recoil backgrounds by a factor of ×136. The strong reduction in backgrounds below the measured R8778 levels makes the R11410 MOD a very competitive technology for use in large-scale liquid xenon detectors.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2016

The Majorana Demonstrator radioassay program

N. Abgrall; I. J. Arnquist; F. T. Avignone; H. O. Back; A. S. Barabash; F. E. Bertrand; Melissa Boswell; A. W. Bradley; V. Brudanin; M. Busch; M. Buuck; D. Byram; A. S. Caldwell; Y.D. Chan; C. D. Christofferson; Pinghan Chu; C. Cuesta; J. A. Detwiler; J. A. Dunmore; Yu. Efremenko; H. Ejiri; S. R. Elliott; P. Finnerty; A. Galindo-Uribarri; V. M. Gehman; T. Gilliss; G. K. Giovanetti; J. Goett; M. P. Green; J. Gruszko

Abstract The Majorana collaboration is constructing the Majorana Demonstrator at the Sanford Underground Research Facility at the Homestake gold mine, in Lead, SD. The apparatus will use Ge detectors, enriched in isotope 76 Ge, to demonstrate the feasibility of a large-scale Ge detector experiment to search for neutrinoless double beta decay. The long half-life of this postulated process requires that the apparatus be extremely low in radioactive isotopes whose decays may produce backgrounds to the search. The radioassay program conducted by the collaboration to ensure that the materials comprising the apparatus are sufficiently pure is described. The resulting measurements from gamma-ray counting, neutron activation and mass spectroscopy of the radioactive-isotope contamination for the materials studied for use in the detector are reported. We interpret these numbers in the context of the expected background for the experiment.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2015

The Majorana Parts Tracking Database

N. Abgrall; E. Aguayo; F. T. Avignone; A. S. Barabash; F. E. Bertrand; V. Brudanin; M. Busch; D. Byram; A. S. Caldwell; Y-D. Chan; C. D. Christofferson; D. C. Combs; C. Cuesta; J. A. Detwiler; P. J. Doe; Yu. Efremenko; V. Egorov; H. Ejiri; S. R. Elliott; J. Esterline; J. E. Fast; P. Finnerty; F. M. Fraenkle; A. Galindo-Uribarri; G. K. Giovanetti; J. Goett; M. P. Green; J. Gruszko; V. E. Guiseppe; K. Gusev

The Majorana Demonstrator is an ultra-low background physics experiment searching for the neutrinoless double beta decay of 76 Ge. The Majorana Parts Tracking Database is used to record the history of components used in the construction of the Demonstrator. The tracking implementation takes a novel approach based on the schema-free database technology CouchDB. Transportation, storage, and processes undergone by parts such as machining or cleaning are linked to part records. Tracking parts provides a great logistics benefit and an important quality a ssurance reference during construction. In addition, the l ocation history of parts provides an estimate of their exposure to cosmic radiation. A web application for data entry and a radiation exposure calculator have been developed as tools for achieving the extreme radio-purity required for this rare decay search.


arXiv: Instrumentation and Detectors | 2015

MAJORANA Collaboration's experience with germanium detectors

S. Mertens; N. Abgrall; F. T. Avignone; A. S. Barabash; F. E. Bertrand; V. Brudanin; M. Busch; M. Buuck; D. Byram; A. S. Caldwell; Y.D. Chan; C. D. Christofferson; C. Cuesta; J. A. Detwiler; Yu. Efremenko; H. Ejiri; S. R. Elliott; A. Galindo-Uribarri; G. K. Giovanetti; J. Goett; M. P. Green; J. Gruszko; I. S. Guinn; V. E. Guiseppe; R. Henning; E. W. Hoppe; S. Howard; M. A. Howe; B. R. Jasinski; K. Keeter

The goal of the Majorana Demonstrator project is to search for 0νββ decay in 76Ge. Of all candidate isotopes for 0νββ, 76Ge has some of the most favorable characteristics. Germanium detectors are a well established technology, and in searches for 0νββ, the high purity germanium crystal acts simultaneously as source and detector. Furthermore, p-type germanium detectors provide excellent energy resolution and a specially designed point contact geometry allows for sensitive pulse shape discrimination. This paper will summarize the experiences the MAJORANA collaboration made with enriched germanium detectors manufactured by ORTEC®®.The process from production, to characterization and integration in MAJORANA mounting structure will be described. A summary of the performance of all enriched germanium detectors will be given.


arXiv: Instrumentation and Detectors | 2015

Low Background Signal Readout Electronics for the MAJORANA DEMONSTRATOR

I. S. Guinn; N. Abgrall; F. T. Avignone; A. S. Barabash; F. E. Bertrand; V. Brudanin; M. Busch; M. Buuck; D. Byram; A. S. Caldwell; Y-D. Chan; C. D. Christofferson; C. Cuesta; J. A. Detwiler; Yu. Efremenko; H. Ejiri; S. R. Elliott; A. Galindo-Uribarri; G. K. Giovanetti; J. Goett; M. P. Green; J. Gruszko; V. E. Guiseppe; R. Henning; E. W. Hoppe; S. Howard; M. A. Howe; B. R. Jasinski; K. Keeter; M. F. Kidd

The Majorana Demonstrator is a planned 40 kg array of Germanium detectors intended to demonstrate the feasibility of constructing a tonne-scale experiment that will seek neutrinoless double beta decay (0νββ) in 76Ge. Such an experiment would require backgrounds of less than 1 count/tonne-year in the 4 keV region of interest around the 2039 keV Q-value of the ββ decay. Designing low-noise electronics, which must be placed in close proximity to the detectors, presents a challenge to reaching this background target. This paper will discuss the Majorana collaborations solutions to some of these challenges.


arXiv: Instrumentation and Detectors | 2015

Status of the Majorana Demonstrator

C. Cuesta; N. Abgrall; I. J. Arnquist; F. T. Avignone; C. X. Baldenegro-Barrera; A. S. Barabash; F. E. Bertrand; A. W. Bradley; V. Brudanin; M. Busch; M. Buuck; D. Byram; A. S. Caldwell; Y.D. Chan; C. D. Christofferson; P-H Chu; J. A. Detwiler; Yu. Efremenko; H. Ejiri; S. R. Elliott; A. Galindo-Uribarri; T. Gilliss; G. K. Giovanetti; J. Goett; M. P. Green; J. Gruszko; I. S. Guinn; V. E. Guiseppe; R. Henning; E. W. Hoppe

The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, modular, HPGe detector array with a mass of 44-kg (29 kg 76Ge and 15 kg natGe) to search for neutrinoless double beta decay in Ge-76. The next generation of tonne-scale Ge-based neutrinoless double beta decay searches will probe the neutrino mass scale in the inverted-hierarchy region. The MAJORANA DEMONSTRATOR is envisioned to demonstrate a path forward to achieve a background rate at or below 1 count/tonne/year in the 4 keV region of interest around the Q-value of 2039 keV. The MAJORANA DEMONSTRATOR follows a modular implementation to be easily scalable to the next generation experiment. First, the prototype module was assembled; it has been continuously taking data from July 2014 to June 2015. Second, Module 1 with more than half of the total enriched detectors and some natural detectors has been assembled and it is being commissioned. Finally, the assembly of Module 2, which will complete MAJORANA DEMONSTRATOR, is already in progress.


Physical Review D | 2018

Liquid xenon scintillation measurements and pulse shape discrimination in the LUX dark matter detector

D. S. Akerib; S. Alsum; H.M. Araújo; X. Bai; A.J. Bailey; J. Balajthy; P. Beltrame; E. Bernard; A. Bernstein; T. P. Biesiadzinski; E. M. Boulton; P. Brás; D. Byram; M.C. Carmona-Benitez; C. Chan; A. Currie; J. E. Cutter; T. J. R. Davison; A. Dobi; E. Druszkiewicz; Blair Edwards; Fallon; A. Fan; S. Fiorucci; R.J. Gaitskell; J. Genovesi; C. Ghag; M. Gilchriese; C. Hall; S. J. Haselschwardt

Weakly Interacting Massive Particles (WIMPs) are a leading candidate for dark matter and are expected to produce nuclear recoil (NR) events within liquid xenon time-projection chambers. We present a measurement of liquid xenon scintillation characteristics in the LUX dark matter detector and develop a pulse shaped based discrimination parameter to be used for particle identification. To accurately measure the scintillation characteristics, we develop a template-fitting method to reconstruct the detection time of photons. Analyzing calibration data collected during the 2013-16 LUX WIMP search, we measure a singlet-to-triplet scintillation ratio for electron recoils (ER) that is consistent with existing literature, and we make a first-ever measurement of the NR singlet-to-triplet ratio at recoil energies below 74 keV. A prompt fraction discrimination parameter exploits the difference of the photon time spectra for NR and ER events and is optimized to have the least number of ER events that occur in the 50\% NR acceptance region. When this discriminator is used in conjunction with charge-to-light discrimination on the calibration data, the signal-to-noise ratio in the NR dark matter acceptance region increases by up to a factor of two.


arXiv: Instrumentation and Detectors | 2015

Analysis techniques for background rejection at the MAJORANA DEMONSTRATOR

C. Cuesta; N. Abgrall; I. J. Arnquist; F. T. Avignone; C. X. Baldenegro-Barrera; A. S. Barabash; F. E. Bertrand; A. W. Bradley; V. Brudanin; M. Busch; M. Buuck; D. Byram; A. S. Caldwell; Y-D. Chan; C. D. Christofferson; J. A. Detwiler; Yu. Efremenko; H. Ejiri; S. R. Elliott; A. Galindo-Uribarri; T. Gilliss; G. K. Giovanetti; J. Goett; M. P. Green; J. Gruszko; I. S. Guinn; V. E. Guiseppe; R. Henning; E. W. Hoppe; S. Howard

The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, 40- kg modular HPGe detector array to search for neutrinoless double beta decay in 76Ge. In view of the next generation of tonne-scale Ge-based 0νβ β-decay searches that will probe the neutrino mass scale in the inverted-hierarchy region, a major goal of the MAJORANA DEMONSTRATOR is to demonstrate a path forward to achieving a background rate at or below 1 count/tonne/year in the 4 keV region of interest around the Q-value at 2039 keV. The background rejection techniques to be applied to the data include cuts based on data reduction, pulse shape analysis, event coincidences, and time correlations. The Point Contact design of the DEMONSTRATOR’s germanium detectors allows for significant reduction of gamma background.

Collaboration


Dive into the D. Byram's collaboration.

Top Co-Authors

Avatar

A. Bernstein

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

X. Bai

South Dakota School of Mines and Technology

View shared research outputs
Top Co-Authors

Avatar

D. S. Akerib

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge