Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. Craig Hooper is active.

Publication


Featured researches published by D. Craig Hooper.


JAMA Neurology | 2015

Use of Advanced Magnetic Resonance Imaging Techniques in Neuromyelitis Optica Spectrum Disorder.

S. Kremer; Félix Renard; Sophie Achard; Marco Aurélio Lana-Peixoto; Jacqueline Palace; Nasrin Asgari; Eric C. Klawiter; Silvia Tenembaum; Brenda Banwell; Benjamin Greenberg; Jeffrey L. Bennett; Michael Levy; Pablo Villoslada; Albert Saiz; Kazuo Fujihara; Koon Ho Chan; Sven Schippling; Friedemann Paul; Ho Jin Kim; Jérôme De Seze; Jens Wuerfel; Philippe Cabre; Romain Marignier; Thomas F. Tedder; Daniëlle E van Pelt; Simon Broadley; Tanuja Chitnis; Dean M. Wingerchuk; Lekha Pandit; Maria Isabel Leite

Brain parenchymal lesions are frequently observed on conventional magnetic resonance imaging (MRI) scans of patients with neuromyelitis optica (NMO) spectrum disorder, but the specific morphological and temporal patterns distinguishing them unequivocally from lesions caused by other disorders have not been identified. This literature review summarizes the literature on advanced quantitative imaging measures reported for patients with NMO spectrum disorder, including proton MR spectroscopy, diffusion tensor imaging, magnetization transfer imaging, quantitative MR volumetry, and ultrahigh-field strength MRI. It was undertaken to consider the advanced MRI techniques used for patients with NMO by different specialists in the field. Although quantitative measures such as proton MR spectroscopy or magnetization transfer imaging have not reproducibly revealed diffuse brain injury, preliminary data from diffusion-weighted imaging and brain tissue volumetry indicate greater white matter than gray matter degradation. These findings could be confirmed by ultrahigh-field MRI. The use of nonconventional MRI techniques may further our understanding of the pathogenic processes in NMO spectrum disorders and may help us identify the distinct radiographic features corresponding to specific phenotypic manifestations of this disease.


Neuro-oncology | 2016

Serum exosomes and cytokines promote a T-helper cell type 2 environment in the peripheral blood of glioblastoma patients

Larry A. Harshyne; Brian J. Nasca; Lawrence Kenyon; David W. Andrews; D. Craig Hooper

BACKGROUNDnGlioblastoma (GBM) is an aggressive infiltrative brain tumor with a particularly poor prognosis that is characterized by microvascular proliferation, necrotic tissue, and significant infiltration of M2-like monocytes. Compromised barrier function in tumor vasculature might be expected to permit communication between the tumor microenvironment and peripheral blood.nnnMETHODSnTo ascertain whether tumor-derived vesicles and/or factors might reach the bloodstream and what effects these molecules have on the peripheral compartment, we analyzed blood samples collected from primary GBM patients.nnnRESULTSnNotably, a significant number of patient sera samples contained tumor exosome-reactive immunoglobulin (Ig)G2 and IgG4 antibody isotypes, which are consistent with Th2 immunity. M2-like monocytes expressing CD14+ and CD163+, another indicator of Th2 bias, are elevated in GBM patient blood and associated with high serum concentrations of colony-stimulating factor 2 and 3, as well as interleukin-2, -4, and -13, the latter 2 cytokines being hallmarks of Th2 immunity. GBM patient sera samples induce high levels of CD163 expression when added to normal monocytes, providing mechanistic evidence of a basis for Th2 bias. Fractionation of GBM patient sera into samples enriched for exosomes or soluble factors proved that both fractions are capable of inducing CD163 expression in normal monocytes.nnnCONCLUSIONSnThe results of the current study indicate a Th2 bias in the periphery of GBM patients, likely as a result of products elaborated by the tumor. Consequentially, through immune modulation these brain tumors exert systemic effects beyond the confines of the CNS.


Journal of Virology | 2013

Intramuscular inoculation of mice with the live-attenuated recombinant rabies virus TriGAS results in a transient infection of the draining lymph nodes and a robust, long-lasting protective immune response against rabies

Keith Schutsky; Dana Curtis; Emily K. Bongiorno; Darryll Barkhouse; Rhonda B. Kean; Bernhard Dietzschold; D. Craig Hooper; Milosz Faber

ABSTRACT A single intramuscular application of the live but not UV-inactivated recombinant rabies virus (RABV) variant TriGAS in mice induces the robust and sustained production of RABV-neutralizing antibodies that correlate with long-term protection against challenge with an otherwise lethal dose of the wild-type RABV. To obtain insight into the mechanism by which live TriGAS induces long-lasting protective immunity, quantitative PCR (qPCR) analysis of muscle tissue, draining lymph nodes, spleen, spinal cord, and brain at different times after TriGAS inoculation revealed the presence of significant copy numbers of RABV-specific RNA in muscle, lymph node, and to a lesser extent, spleen for several days postinfection. Notably, no significant amounts of RABV RNA were detected in brain or spinal cord at any time after TriGAS inoculation. Differential qPCR analysis revealed that the RABV-specific RNA detected in muscle is predominantly genomic RNA, whereas RABV RNA detected in draining lymph nodes is predominantly mRNA. Comparison of genomic RNA and mRNA obtained from isolated lymph node cells showed the highest mRNA-to-genomic-RNA ratios in B cells and dendritic cells (DCs), suggesting that these cells represent the major cell population that is infected in the lymph node. Since RABV RNA declined to undetectable levels by 14 days postinoculation of TriGAS, we speculate that a transient infection of DCs with TriGAS may be highly immunostimulatory through mechanisms that enhance antigen presentation. Our results support the superior efficacy and safety of TriGAS and advocate for its utility as a vaccine.


Journal of Virology | 2015

Expression of Interferon Gamma by a Recombinant Rabies Virus Strongly Attenuates the Pathogenicity of the Virus via Induction of Type I Interferon

Darryll Barkhouse; Samantha A. Garcia; Emily K. Bongiorno; Aurore Lebrun; Milosz Faber; D. Craig Hooper

ABSTRACT Previous animal model experiments have shown a correlation between interferon gamma (IFN-γ) expression and both survival from infection with attenuated rabies virus (RABV) and reduction of neurological sequelae. Therefore, we hypothesized that rapid production of murine IFN-γ by the rabies virus itself would induce a more robust antiviral response than would occur naturally in mice. To test this hypothesis, we used reverse engineering to clone the mouse IFN-γ gene into a pathogenic rabies virus backbone, SPBN, to produce the recombinant rabies virus designated SPBNγ. Morbidity and mortality were monitored in mice infected intranasally with SPBNγ or SPBN(−) control virus to determine the degree of attenuation caused by the expression of IFN-γ. Incorporation of IFN-γ into the rabies virus genome highly attenuated the virus. SPBNγ has a 50% lethal dose (LD50) more than 100-fold greater than SPBN(−). In vitro and in vivo mouse experiments show that SPBNγ infection enhances the production of type I interferons. Furthermore, knockout mice lacking the ability to signal through the type I interferon receptor (IFNAR−/−) cannot control the SPBNγ infection and rapidly die. These data suggest that IFN-γ production has antiviral effects in rabies, largely due to the induction of type I interferons. IMPORTANCE Survival from rabies is dependent upon the early control of virus replication and spread. Once the virus reaches the central nervous system (CNS), this becomes highly problematic. Studies of CNS immunity to RABV have shown that control of replication begins at the onset of T cell entry and IFN-γ production in the CNS prior to the appearance of virus-neutralizing antibodies. Moreover, antibody-deficient mice are able to control but not clear attenuated RABV from the CNS. We find here that IFN-γ triggers the early production of type I interferons with the expected antiviral effects. We also show that engineering a lethal rabies virus to express IFN-γ directly in the infected tissue reduces rabies virus replication and spread, limiting its pathogenicity in normal and immunocompromised mice. Therefore, vector delivery of IFN-γ to the brain may have the potential to treat individuals who would otherwise succumb to infection with rabies virus.


Cancer Immunology, Immunotherapy | 2015

Glioblastoma exosomes and IGF-1R/AS-ODN are immunogenic stimuli in a translational research immunotherapy paradigm.

Larry A. Harshyne; Kirsten M. Hooper; Edward Andrews; Brian J. Nasca; Lawrence Kenyon; David W. Andrews; D. Craig Hooper

AbstractnGlioblastomas are primary intracranial tumors for which there is no cure. Patients receiving standard of care, chemotherapy and irradiation, survive approximately 15xa0months prompting studies of alternative therapies including vaccination. In a pilot study, a vaccine consisting of Lucite diffusion chambers containing irradiated autologous tumor cells pre-treated with an antisense oligodeoxynucleotide (AS-ODN) directed against the insulin-like growth factor type 1 receptor was found to elicit positive clinical responses in 8/12 patients when implanted in the rectus sheath for 24xa0h. Our preliminary observations supported an immune response, and we have since reopened a second Phase 1 trial to assess this possibility among other exploratory objectives. The current study makes use of a murine glioma model and samples from glioblastoma patients in this second Phase 1 trial to investigate this novel therapeutic intervention more thoroughly. Implantation of the chamber-based vaccine protected mice from tumor challenge, and we posit this occurred through the release of immunostimulatory AS-ODN and antigen-bearing exosomes. Exosomes secreted by glioblastoma cultures are immunogenic, eliciting and binding antibodies present in the sera of immunized mice. Similarly, exosomes released by human glioblastoma cells bear antigens recognized by the sera of 6/12 patients with recurrent glioblastomas. These results suggest that the release of AS-ODN together with selective release of exosomes from glioblastoma cells implanted in chambers may drive the therapeutic effect seen in the pilot vaccine trial.


Journal of Hematology & Oncology | 2016

Immune biomarkers of treatment failure for a patient on a phase I clinical trial of pembrolizumab plus radiotherapy

Gregory S. Alexander; J.D. Palmer; Madalina Tuluc; Jianqing Lin; Adam P. Dicker; Voichita Bar-Ad; Larry A. Harshyne; Jennifer Louie; Colette M. Shaw; D. Craig Hooper; Bo Lu

BackgroundPembrolizumab is a monoclonal antibody that is designed against programmed cell death protein 1 (PD-1). Pembrolizumab and other immunocheckpoint-blocking monoclonal antibodies work by modulating a patient’s own immune system to increase anti-tumor activity. While immunocheckpoint blockade has shown promising results, only 20–40xa0% of patients experience objective clinical benefit. Differences in individual tumor biology and the presence multiple immune checkpoints present a challenge for treatment. Because radiotherapy has immunomodulatory effects on the tumor microenvironment, it has the potential to synergize with immunotherapy and augment tumor response. NCT02318771 is a phase 1 clinical trial designed to investigate the immunomodulatory effects of radiation therapy in combination with pembrolizumab.Case presentationThe patient is a 64-year-old male with metastatic clear cell renal cell carcinoma, Fuhrman grade 4, pathologically staged as T3 N0. Metastatic disease was well controlled for several years with sunitinib. Following disease progression, he was switched to axitinib. When disease progression continued, the patient was enrolled in NCT02318771, a phase 1 clinical trial combining radiotherapy and pembrolizumab. The patient experienced unusually rapid disease progression during treatment, which was confirmed by repeated CT scans to rule out pseudoprogression. Tissue biopsies and peripheral blood draws were obtained before, during, and after treatment. Samples were analyzed to provide plausible rationale for rapid treatment failure.ConclusionsBiomarker analysis demonstrated an absence of TILs, which may be a cause of treatment failure as pembrolizumab works through T cell-dependent mechanisms. Furthermore, the presence of other non-redundant immune checkpoints in the periphery and tumor microenvironment presents a treatment challenge. Additionally, the radiation dose and fractionation schedule may have played a role in treatment failure as these factors play a role in the effect radiotherapy on the tumor microenvironment as well as the potential for synergy with immunotherapy.Trial registrationAn Exploratory Study to Investigate the Immunomodulatory Activity of Radiation Therapy (RT) in Combination With MK-3475 in Patients With Recurrent/Metastatic Head and Neck, Renal Cell Cancer, Melanoma and Lung Cancer, NCT02318771.


Virology | 2015

Pre- and post-exposure safety and efficacy of attenuated rabies virus vaccines are enhanced by their expression of IFNγ.

Darryll Barkhouse; Milosz Faber; D. Craig Hooper

Consistent with evidence of a strong correlation between interferon gamma (IFNγ) production and rabies virus (RABV) clearance from the CNS, we recently demonstrated that engineering a pathogenic RABV to express IFNγ highly attenuates the virus. Reasoning that IFNγ expression by RABV vaccines would enhance their safety and efficacy, we reverse-engineered two proven vaccine vectors, GAS and GASGAS, to express murine IFNγ. Mortality and morbidity were monitored during suckling mice infection, immunize/challenge experiments and mixed intracranial infections. We demonstrate that GASγ and GASγGAS are significantly attenuated in suckling mice compared to the GASGAS vaccine. GASγ better protects mice from lethal DRV4 RABV infection in both pre- and post-exposure experiments compared to GASGAS. Finally, GASγGAS reduces post-infection neurological sequelae, compared to control, during mixed intracranial infection with DRV4. These data show IFNγ expression by a vaccine vector can enhance its safety while increasing its efficacy as pre- and post-exposure treatment.


PLOS ONE | 2014

Limited Brain Metabolism Changes Differentiate between the Progression and Clearance of Rabies Virus

Keith Schutsky; Carla Portocarrero; D. Craig Hooper; Bernhard Dietzschold; Milosz Faber

Central nervous system (CNS) metabolic profiles were examined from rabies virus (RABV)-infected mice that were either mock-treated or received post-exposure treatment (PET) with a single dose of the live recombinant RABV vaccine TriGAS. CNS tissue harvested from mock-treated mice at middle and late stage infection revealed numerous changes in energy metabolites, neurotransmitters and stress hormones that correlated with replication levels of viral RNA. Although the large majority of these metabolic changes were completely absent in the brains of TriGAS-treated mice most likely due to the strong reduction in virus spread, TriGAS treatment resulted in the up-regulation of the expression of carnitine and several acylcarnitines, suggesting that these compounds are neuroprotective. The most striking change seen in mock-treated RABV-infected mice was a dramatic increase in brain and serum corticosterone levels, with the later becoming elevated before clinical signs or loss of body weight occurred. We speculate that the rise in corticosterone is part of a strategy of RABV to block the induction of immune responses that would otherwise interfere with its spread. In support of this concept, we show that pharmacological intervention to inhibit corticosterone biosynthesis, in the absence of vaccine treatment, significantly reduces the pathogenicity of RABV. Our results suggest that widespread metabolic changes, including hypothalamic-pituitary-adrenal axis activation, contribute to the pathogenesis of RABV and that preventing these alterations early in infection with PET or pharmacological blockade helps protect brain homeostasis, thereby reducing disease mortality.


Journal of Clinical Virology | 2017

Human parechovirus and enterovirus initiate distinct CNS innate immune responses: Pathogenic and diagnostic implications

Danielle Fortuna; Ana María Cárdenas; Erin H. Graf; Larry A. Harshyne; D. Craig Hooper; Michael Prosniak; John Shields; Mark T. Curtis

BACKGROUNDnHuman parechovirus (HPeV) and enterovirus (EV) cause a range of human diseases including serious CNS infections. Little is known regarding the immune response to HPeV meningitis compared to EV meningitis or how the immune response to HPeV reflects its pathogenesis.nnnOBJECTIVEnTo characterize the innate immune response to HPeV CNS infection in order to increase our understanding of HPeV pathogenesis and possibly help identify HPeV in the clinical setting.nnnSTUDY DESIGNnCSF samples from 13 patients with HPeV meningitis, 7 patients with EV meningitis, and 11 patients negative for CNS infections were analyzed for chemokines/cytokines using multiplex ELISA assays.nnnRESULTSnCSF levels of the majority of cytokines/chemokines analyzed were significantly higher in patients with EV meningitis (EV group) compared to patients with HPeV meningitis (HPeV group) and controls. In the HPeV group, a small number of cytokine/chemokine levels were higher than controls; however, these levels were either significantly lower or not significantly different compared to the EV group. IL-6 levels were lower in HPeV than in both EV and controls.nnnCONCLUSIONSnThe immune response to HPeV CNS infection differs from that of EV. Distinct patterns of cytokine/chemokine expression in HPeV infections suggest HPeV-mediated modulation of the immune response. HPeV disrupts the interferon cascade and seems to interfere with early inflammatory signaling. Although HPeV elicits a predominantly muted immune reaction, a partial, general infectious-type cytokine/chemokine response does occur. Beyond providing insight into HPeV pathogenesis, the identified cytokine/chemokine profile may aid in early detection of HPeV infection.


Cancer Immunology, Immunotherapy | 2015

Enhancement of glioma-specific immunity in mice by “NOBEL”, an insulin-like growth factor 1 receptor antisense oligodeoxynucleotide

Mélanie Morin-Brureau; Kirsten M. Hooper; Michael Prosniak; Sami Sauma; Larry A. Harshyne; David W. Andrews; D. Craig Hooper

Autologous glioblastoma multiforme tumor cells treated with an antisense oligodeoxynucleotide (AS-ODN) targeting insulin-like growth factor receptor-1 (IGF-1R) are the basis of a vaccine with therapeutic effects on tumor recurrence in a pilot clinical trial. As a preface to continued clinical investigation of this vaccination strategy, we have studied the contribution of an optimized IGF-1R AS-ODN, designated “NOBEL”, to the induction of immunity to mouse GL261 glioma cells. The impact of NOBEL on mechanisms contributingxa0to the development of GL261 immunity was first examined in the periphery. GL261 cells are naturally immunogenic when implanted into the flanks of congenic C57BL/6 mice, immunizing rather than forming tumors in around 50xa0% of these animals but causing tumors in the majority of mice lacking T and B lymphocytes. Overnight treatment with NOBEL in vitro reduces IGF-1R expression by GL261 cells but has minimal effect on cell viability and does not reduce the capacity of the cells to form tumors upon implantation. In contrast, tumors are extremely rare when GL261 cells are mixed with NOBEL at inoculation into the flanks of C57BL/6, and the recipient mice become immune to subcutaneous and intracranial challenge with untreated GL261. Adaptive immune mechanisms contribute to this effect, as immunocompromised mice fail to either fully control tumor formation or develop immunity following flank administration of the GL261/NOBEL mix. NOBEL’s structure has known immunostimulatory motifs that likely contribute to the immunogenicity of the mix, but its specificity for IGF-1R mRNA is also important as a similarly structured sense molecule is not effective.

Collaboration


Dive into the D. Craig Hooper's collaboration.

Top Co-Authors

Avatar

Larry A. Harshyne

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Milosz Faber

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Darryll Barkhouse

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

David W. Andrews

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Emily K. Bongiorno

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Adam P. Dicker

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian J. Nasca

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Keith Schutsky

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge