Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David W. Andrews is active.

Publication


Featured researches published by David W. Andrews.


Cell | 2008

Membrane Binding by tBid Initiates an Ordered Series of Events Culminating in Membrane Permeabilization by Bax

Jonathan F. Lovell; Lieven P. Billen; Scott Bindner; Aisha Shamas-Din; Cécile Fradin; Brian Leber; David W. Andrews

In normal circumstances, the Bcl-2 family dutifully governs when cells die. However, the rules of engagement between the pro- and antiapoptotic family members are still contested, and how Bax is transformed from a cytosolic monomer to an outer mitochondrial membrane-permeabilizing oligomer is unclear. With fluorescence techniques and an in vitro system, the combination of tBid and Bax produced dramatic membrane permeabilization. The membrane is not a passive partner in this process beause membranes are required for the protein-protein interactions to occur. Simultaneous measurements of these interactions revealed an ordered series of steps required for outer membrane permeabilization: (1) tBid rapidly binds to membranes, where (2) tBid interacts with Bax, causing (3) Bax insertion into membranes and (4) oligomerization, culminating in (5) membrane permeabilization. Bcl-XL prevents membrane-bound tBid from binding Bax. Bad releases tBid from Bcl-XL, restoring both tBid binding to Bax and membrane permeabilization.


PLOS Biology | 2008

Bcl-XL inhibits membrane permeabilization by competing with Bax.

Lieven P. Billen; Candis L. Kokoski; Jonathan F. Lovell; Brian Leber; David W. Andrews

Although Bcl-XL and Bax are structurally similar, activated Bax forms large oligomers that permeabilize the outer mitochondrial membrane, thereby committing cells to apoptosis, whereas Bcl-XL inhibits this process. Two different models of Bcl-XL function have been proposed. In one, Bcl-XL binds to an activator, thereby preventing Bax activation. In the other, Bcl-XL binds directly to activated Bax. It has been difficult to sort out which interaction is important in cells, as all three proteins are present simultaneously. We examined the mechanism of Bax activation by tBid and its inhibition by Bcl-XL using full-length recombinant proteins and measuring permeabilization of liposomes and mitochondria in vitro. Our results demonstrate that Bcl-XL and Bax are functionally similar. Neither protein bound to membranes alone. However, the addition of tBid recruited molar excesses of either protein to membranes, indicating that tBid activates both pro- and antiapoptotic members of the Bcl-2 family. Bcl-XL competes with Bax for the activation of soluble, monomeric Bax through interaction with membranes, tBid, or t-Bid-activated Bax, thereby inhibiting Bax binding to membranes, oligomerization, and membrane permeabilization. Experiments in which individual interactions were abolished by mutagenesis indicate that both Bcl-XL–tBid and Bcl-XL–Bax binding contribute to the antiapoptotic function of Bcl-XL. By out-competing Bax for the interactions leading to membrane permeabilization, Bcl-XL ties up both tBid and Bax in nonproductive interactions and inhibits Bax binding to membranes. We propose that because Bcl-XL does not oligomerize it functions like a dominant-negative Bax in the membrane permeabilization process.


Molecular Cell | 2013

BID Preferentially Activates BAK while BIM Preferentially Activates BAX, Affecting Chemotherapy Response

Kristopher A. Sarosiek; Xiaoke Chi; John A. Bachman; Joshua J. Sims; Joan Montero; Luv Patel; Annabelle Flanagan; David W. Andrews; Peter K. Sorger; Anthony Letai

Apoptosis is a highly regulated form of cell death that controls normal homeostasis as well as the antitumor activity of many chemotherapeutic agents. Commitment to death via the mitochondrial apoptotic pathway requires activation of the mitochondrial pore-forming proteins BAK or BAX. Activation can be effected by the activator BH3-only proteins BID or BIM, which have been considered to be functionally redundant in this role. Herein, we show that significant activation preferences exist between these proteins: BID preferentially activates BAK while BIM preferentially activates BAX. Furthermore, we find that cells lacking BAK are relatively resistant to agents that require BID activation for maximal induction of apoptosis, including topoisomerase inhibitors and TRAIL. Consequently, patients with tumors that harbor a loss of BAK1 exhibit an inferior response to topoisomerase inhibitor treatment in the clinic. Therefore, BID and BIM have nonoverlapping roles in the induction of apoptosis via BAK and BAX, affecting chemotherapy response.


Journal of Biological Chemistry | 2013

tBid Undergoes Multiple Conformational Changes at the Membrane Required for Bax Activation

Aisha Shamas-Din; Scott Bindner; Weijia Zhu; Yehudit Zaltsman; Clinton J.V. Campbell; Atan Gross; Brian Leber; David W. Andrews; Cécile Fradin

Background: tBid is a Bcl-2 family protein that promotes apoptosis at the mitochondria. Results: tBid undergoes a reversible conformational change at membranes before activation that is accelerated by Mtch2. Conclusion: The Mtch2 accelerated conformational change in membrane-bound tBid enables it to activate Bax. Significance: The conformational change in tBid is a novel potential site of apoptosis regulation. Bid is a Bcl-2 family protein that promotes apoptosis by activating Bax and eliciting mitochondrial outer membrane permeabilization (MOMP). Full-length Bid is cleaved in response to apoptotic stimuli into two fragments, p7 and tBid (p15), that are held together by strong hydrophobic interactions until the complex binds to membranes. The detailed mechanism(s) of fragment separation including tBid binding to membranes and release of the p7 fragment to the cytoplasm remain unclear. Using liposomes or isolated mitochondria with fluorescently labeled proteins at physiological concentrations as in vitro models, we report that the two components of the complex quickly separate upon interaction with a membrane. Once tBid binds to the membrane, it undergoes slow structural rearrangements that result in an equilibrium between two major tBid conformations on the membrane. The conformational change of tBid is a prerequisite for interaction with Bax and is, therefore, a novel step that can be modulated to promote or inhibit MOMP. Using automated high-throughput image analysis in cells, we show that down-regulation of Mtch2 causes a significant delay between tBid and Bax relocalization in cells. We propose that by promoting insertion of tBid via a conformational change at the mitochondrial outer membrane, Mtch2 accelerates tBid-mediated Bax activation and MOMP. Thus the interaction of Mtch2 and tBid is a potential target for therapeutic control of Bid initiated cell death.


Cell | 2012

Shedding Light on Apoptosis at Subcellular Membranes

Justin Kale; Qian Liu; Brian Leber; David W. Andrews

Regulation of apoptosis by Bcl-2 family proteins is a paradigm for complex protein-protein and protein-membrane systems. Elucidating the molecular mechanisms of these interactions inxa0vitro in live cells and in animal studies has been significantly enhanced by using fluorescence techniques.


Molecular Cell | 2012

Differences in the Mechanisms of Proapoptotic BH3 Proteins Binding to Bcl-XL and Bcl-2 Quantified in Live MCF-7 Cells

Alexander Aranovich; Qian Liu; Tony J. Collins; Fei Geng; Sudeepa Dixit; Brian Leber; David W. Andrews

Overexpression of antiapoptotic proteins including Bcl-XL and/or Bcl-2 contributes to tumor initiation, progression, and resistance to therapy by direct interactions with proapoptotic BH3 proteins. Release of BH3 proteins from antiapoptotic proteins kills some cancer cells and sensitizes others to chemotherapy. Binding of Bcl-XL and Bcl-2 to the BH3 proteins Bad, Bid, and the three major isoforms of Bim was measured for fluorescent protein fusions in live cells using fluorescence lifetime imaging microscopy and fluorescence resonance energy transfer. In cells the binding of the proteins at mitochondria is similar to the results from in vitro measurements. However, mutations in the BH3 region of Bim known to inhibit binding to Bcl-XL and Bcl-2 in vitro had much less effect in MCF-7 cells. Moreover, the BH3 mimetic ABT-737 inhibited Bad and Bid but not Bim binding to Bcl-XL and Bcl-2. Thus, the selectivity of ABT-737 also differs markedly from predictions made from in vitro measurements.


Plant Physiology | 2016

Lipid Droplet-Associated Proteins (LDAPs) Are Required for the Dynamic Regulation of Neutral Lipid Compartmentation in Plant Cells.

Satinder K. Gidda; Sunjung Park; Michal Pyc; Olga Yurchenko; Yingqi Cai; Peng Wu; David W. Andrews; Kent D. Chapman; John M. Dyer; Robert T. Mullen

Lipid droplet-associated proteins play different roles in various physiological contexts and during plant stress responses. Eukaryotic cells compartmentalize neutral lipids into organelles called lipid droplets (LDs), and while much is known about the role of LDs in storing triacylglycerols in seeds, their biogenesis and function in nonseed tissues are poorly understood. Recently, we identified a class of plant-specific, lipid droplet-associated proteins (LDAPs) that are abundant components of LDs in nonseed cell types. Here, we characterized the three LDAPs in Arabidopsis (Arabidopsis thaliana) to gain insight to their targeting, assembly, and influence on LD function and dynamics. While all three LDAPs targeted specifically to the LD surface, truncation analysis of LDAP3 revealed that essentially the entire protein was required for LD localization. The association of LDAP3 with LDs was detergent sensitive, but the protein bound with similar affinity to synthetic liposomes of various phospholipid compositions, suggesting that other factors contributed to targeting specificity. Investigation of LD dynamics in leaves revealed that LD abundance was modulated during the diurnal cycle, and characterization of LDAP misexpression mutants indicated that all three LDAPs were important for this process. LD abundance was increased significantly during abiotic stress, and characterization of mutant lines revealed that LDAP1 and LDAP3 were required for the proper induction of LDs during heat and cold temperature stress, respectively. Furthermore, LDAP1 was required for proper neutral lipid compartmentalization and triacylglycerol degradation during postgerminative growth. Taken together, these studies reveal that LDAPs are required for the maintenance and regulation of LDs in plant cells and perform nonredundant functions in various physiological contexts, including stress response and postgerminative growth.


Cell Cycle | 2012

Interactions of pro-apoptotic BH3 proteins with anti-apoptotic Bcl-2 family proteins measured in live MCF-7 cells using FLIM FRET.

Qian Liu; Brian Leber; David W. Andrews

Increased interactions between pro-apoptotic BH3-only proteins and anti-apoptotic Bcl-2 family proteins at mitochondria result in tumor initiation, progression and resistance to traditional chemotherapy. Drugs that mimic the BH3 region are expected to release BH3-only proteins from anti-apoptotic proteins, inducing apoptosis in some cancer cells and sensitizing others to chemotherapy. Recently, we applied fluorescence lifetime imaging microscopy and fluorescence resonance energy transfer to measure protein:protein interactions for the Bcl-2 family of proteins in live MCF-7 cells using fluorescent fusion proteins. While the BH3-proteins bound to Bcl-XL and Bcl-2, the BH3 mimetic ABT-737 inhibited binding of only Bad and tBid, but not Bim. We have extended our studies by investigating ABT-263, a clinical drug based on ABT-737. We show that the inhibitory effects and pattern of the two drugs are comparable for both Bcl-XL and Bcl-2. Furthermore, we show that mutation of a conserved residue in the BH3 region in Bad and tBid disrupted their interactions with Bcl-XL and Bcl-2, while the corresponding BimEL mutant showed no decrease in binding to these anti-apoptotic proteins. Therefore, in MCF-7 cells, Bim has unique binding properties compared with other BH3-only proteins that resist displacement from Bcl-XL and Bcl-2 by BH3 mimetics.


BMC Systems Biology | 2011

Removing bias against membrane proteins in interaction networks.

Glauber C Brito; David W. Andrews

BackgroundCellular interaction networks can be used to analyze the effects on cell signaling and other functional consequences of perturbations to cellular physiology. Thus, several methods have been used to reconstitute interaction networks from multiple published datasets. However, the structure and performance of these networks depends on both the quality and the unbiased nature of the original data. Due to the inherent bias against membrane proteins in protein-protein interaction (PPI) data, interaction networks can be compromised particularly if they are to be used in conjunction with drug screening efforts, since most drug-targets are membrane proteins.ResultsTo overcome the experimental bias against PPIs involving membrane-associated proteins we used a probabilistic approach based on a hypergeometric distribution followed by logistic regression to simultaneously optimize the weights of different sources of interaction data. The resulting less biased genome-scale network constructed for the budding yeast Saccharomyces cerevisiae revealed that the starvation pathway is a distinct subnetwork of autophagy and retrieved a more integrated network of unfolded protein response genes. We also observed that the centrality-lethality rule depends on the content of membrane proteins in networks.ConclusionsWe show here that the bias against membrane proteins can and should be corrected in order to have a better representation of the interactions and topological properties of protein interaction networks.


Frontiers in Plant Science | 2014

New insights into the targeting of a subset of tail-anchored proteins to the outer mitochondrial membrane

Naomi J. Marty; Howard J. Teresinski; Yeen Ting Hwang; Eric A. Clendening; Satinder K. Gidda; Elwira Sliwinska; Daiyuan Zhang; Ján A. Miernyk; Glauber Costa Brito; David W. Andrews; John M. Dyer; Robert T. Mullen

Tail-anchored (TA) proteins are a unique class of functionally diverse membrane proteins defined by their single C-terminal membrane-spanning domain and their ability to insert post-translationally into specific organelles with an Ncytoplasm-Corganelle interior orientation. The molecular mechanisms by which TA proteins are sorted to the proper organelles are not well-understood. Herein we present results indicating that a dibasic targeting motif (i.e., -R-R/K/H-X{X≠E}) identified previously in the C terminus of the mitochondrial isoform of the TA protein cytochrome b5, also exists in many other A. thaliana outer mitochondrial membrane (OMM)-TA proteins. This motif is conspicuously absent, however, in all but one of the TA protein subunits of the translocon at the outer membrane of mitochondria (TOM), suggesting that these two groups of proteins utilize distinct biogenetic pathways. Consistent with this premise, we show that the TA sequences of the dibasic-containing proteins are both necessary and sufficient for targeting to mitochondria, and are interchangeable, while the TA regions of TOM proteins lacking a dibasic motif are necessary, but not sufficient for localization, and cannot be functionally exchanged. We also present results from a comprehensive mutational analysis of the dibasic motif and surrounding sequences that not only greatly expands the functional definition and context-dependent properties of this targeting signal, but also led to the identification of other novel putative OMM-TA proteins. Collectively, these results provide important insight to the complexity of the targeting pathways involved in the biogenesis of OMM-TA proteins and help define a consensus targeting motif that is utilized by at least a subset of these proteins.

Collaboration


Dive into the David W. Andrews's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Armstrong

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

John M. Dyer

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Jonathan F. Lovell

State University of New York System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge