Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. E. Jennings is active.

Publication


Featured researches published by D. E. Jennings.


The Astrophysical Journal | 2009

TITAN'S SURFACE BRIGHTNESS TEMPERATURES

D. E. Jennings; F. M. Flasar; V. G. Kunde; R. E. Samuelson; John C. Pearl; Conor A. Nixon; R. C. Carlson; A. A. Mamoutkine; John C. Brasunas; E. Guandique; Richard Karl Achterberg; Gordon L. Bjoraker; P. N. Romani; Marcia Segura; S. A. Albright; M. H. Elliott; J. S. Tingley; Simon B. Calcutt; Athena Coustenis; R. Courtin

Radiance from the surface of Titan can be detected from space through a spectral window of low opacity in the thermal infrared at 19 μm (530 cm–1). By combining Composite Infrared Spectrometer observations from Cassinis first four years, we have mapped the latitude distribution of zonally averaged surface brightness temperatures. The measurements are corrected for atmospheric opacity as derived from the dependence of radiance on the emission angle. At equatorial latitudes near the Huygens landing site, the surface brightness temperature is found to be 93.7 ± 0.6 K, in excellent agreement with the in situ measurement. Temperature decreases toward the poles, reaching 90.5 ± 0.8 K at 87°N and 91.7 ± 0.7 K at 88°S. The meridional distribution of temperature has a maximum near 10°S, consistent with Titans late northern winter.


Science | 2016

Surface compositions across Pluto and Charon.

William M. Grundy; Richard P. Binzel; Bonnie J. Buratti; Jason C. Cook; Dale P. Cruikshank; C.M. Dalle Ore; A.M. Earle; Kimberly Ennico; Carly Howett; Allen W. Lunsford; Catherine B. Olkin; Alex H. Parker; S. Philippe; Silvia Protopapa; Eric Quirico; D. C. Reuter; Bernard Schmitt; Kelsi N. Singer; Anne Jacqueline Verbiscer; Ross A. Beyer; Marc William Buie; Andrew F. Cheng; D. E. Jennings; Ivan R. Linscott; J. Wm. Parker; Paul M. Schenk; John R. Spencer; John Arthur Stansberry; S. A. Stern; Henry Blair Throop

New Horizons unveils the Pluto system In July 2015, the New Horizons spacecraft flew through the Pluto system at high speed, humanitys first close look at this enigmatic system on the outskirts of our solar system. In a series of papers, the New Horizons team present their analysis of the encounter data downloaded so far: Moore et al. present the complex surface features and geology of Pluto and its large moon Charon, including evidence of tectonics, glacial flow, and possible cryovolcanoes. Grundy et al. analyzed the colors and chemical compositions of their surfaces, with ices of H2O, CH4, CO, N2, and NH3 and a reddish material which may be tholins. Gladstone et al. investigated the atmosphere of Pluto, which is colder and more compact than expected and hosts numerous extensive layers of haze. Weaver et al. examined the small moons Styx, Nix, Kerberos, and Hydra, which are irregularly shaped, fast-rotating, and have bright surfaces. Bagenal et al. report how Pluto modifies its space environment, including interactions with the solar wind and a lack of dust in the system. Together, these findings massively increase our understanding of the bodies in the outer solar system. They will underpin the analysis of New Horizons data, which will continue for years to come. Science, this issue pp. 1284, 10.1126/science.aad9189, 10.1126/science.aad8866, 10.1126/science.aae0030, & 10.1126/science.aad9045 Pluto and Charon have surfaces dominated by volatile ices, with large variations in color and albedo. INTRODUCTION The Kuiper Belt hosts a swarm of distant, icy objects ranging in size from small, primordial planetesimals to much larger, highly evolved objects, representing a whole new class of previously unexplored cryogenic worlds. Pluto, the largest among them, along with its system of five satellites, has been revealed by NASA’s New Horizons spacecraft flight through the system in July 2015, nearly a decade after its launch. RATIONALE Landforms expressed on the surface of a world are the product of the available materials and of the action of the suite of processes that are enabled by the local physical and chemical conditions. They provide observable clues about what processes have been at work over the course of time, the understanding of which is a prerequisite to reconstructing the world’s history. Materials known to exist at Pluto’s surface from ground-based spectroscopic observations include highly volatile cryogenic ices of N2 and CO, along with somewhat less volatile CH4 ice, as well as H2O and C2H6 ices and more complex tholins that are inert at Pluto surface temperatures. Ices of H2O and NH3 are inert components known to exist on Pluto’s large satellite Charon. New Horizons’ Ralph instrument was designed to map colors and compositions in the Pluto system. It consists of a charge-coupled device camera with four color filters spanning wavelengths from 400 to 970 nm plus a near-infrared imaging spectrometer covering wavelengths from 1.25 to 2.5 μm, where the various cryogenic ices are distinguishable via their characteristic vibrational absorption features. RESULTS New Horizons made its closest approach to the system on 14 July 2015. Observations of Pluto and Charon obtained that day reveal regionally diverse colors and compositions. On Pluto, the color images show nonvolatile tholins coating an ancient, heavily cratered equatorial belt. A smooth, thousand-kilometer plain must be able to refresh its surface rapidly enough to erase all impact craters. Infrared observations of this region show volatile ices including N2 and CO. H2O ice is not detected there, but it does appear in neighboring regions. CH4 ice appears on crater rims and mountain ridges at low latitudes and is abundant at Pluto’s high northern latitudes. Pluto’s regional albedo contrasts are among the most extreme for solar system objects. Pluto’s large moon Charon offers its own surprises. Its H2O ice–rich surface is unlike other outer solar system icy satellites in exhibiting distinctly reddish tholin coloration around its northern pole as well as a few highly localized patches rich in NH3 ice. CONCLUSION Pluto exhibits evidence for a variety of processes that act to modify its surface over time scales ranging from seasonal to geological. Much of this activity is enabled by the existence of volatile ices such as N2 and CO that are easily mobilized even at the extremely low temperatures prevalent on Pluto’s surface, around 40 K. These ices sublimate and condense on seasonal time scales and flow glacially. As they move about Pluto’s surface environment, they interact with materials such as H2O ice that are sufficiently rigid to support rugged topography. Although Pluto’s durable H2O ice is probably not active on its own, it appears to be sculpted in a variety of ways through the action of volatile ices of N2 and CO. CH4 ice plays a distinct role of its own, enabled by its intermediate volatility. CH4 ice condenses at high altitudes and on the winter hemisphere, contributing to the construction of some of Pluto’s more unusual and distinctive landforms. The latitudinal distribution of Charon’s polar reddening suggests a thermally controlled production process, and the existence of highly localized patches rich in NH3 ice on its surface implies relatively recent emplacement. Enhanced color view of Pluto’s surface diversity This mosaic was created by merging Multispectral Visible Imaging Camera color imagery (650 m per pixel) with Long Range Reconnaissance Imager panchromatic imagery (230 m per pixel). At lower right, ancient, heavily cratered terrain is coated with dark, reddish tholins. At upper right, volatile ices filling the informally named Sputnik Planum have modified the surface, creating a chaos-like array of blocky mountains. Volatile ice occupies a few nearby deep craters, and in some areas the volatile ice is pocked with arrays of small sublimation pits. At left, and across the bottom of the scene, gray-white CH4 ice deposits modify tectonic ridges, the rims of craters, and north-facing slopes. The New Horizons spacecraft mapped colors and infrared spectra across the encounter hemispheres of Pluto and Charon. The volatile methane, carbon monoxide, and nitrogen ices that dominate Pluto’s surface have complicated spatial distributions resulting from sublimation, condensation, and glacial flow acting over seasonal and geological time scales. Pluto’s water ice “bedrock” was also mapped, with isolated outcrops occurring in a variety of settings. Pluto’s surface exhibits complex regional color diversity associated with its distinct provinces. Charon’s color pattern is simpler, dominated by neutral low latitudes and a reddish northern polar region. Charon’s near-infrared spectra reveal highly localized areas with strong ammonia absorption tied to small craters with relatively fresh-appearing impact ejecta.


Science | 2016

The Small Satellites of Pluto as Observed by New Horizons

H.A. Weaver; Marc William Buie; Bonnie J. Buratti; William M. Grundy; Tod R. Lauer; Catherine B. Olkin; Alex H. Parker; Simon B. Porter; Mark R. Showalter; John R. Spencer; S. A. Stern; Anne Jacqueline Verbiscer; William B. McKinnon; J. M. Moore; Stuart J. Robbins; Paul M. Schenk; Kelsi N. Singer; Olivier S. Barnouin; Andrew F. Cheng; Carolyn M. Ernst; Carey Michael Lisse; D. E. Jennings; Allen W. Lunsford; D. C. Reuter; Douglas P. Hamilton; David E. Kaufmann; Kimberly Ennico; Leslie A. Young; Ross A. Beyer; Richard P. Binzel

New Horizons unveils the Pluto system In July 2015, the New Horizons spacecraft flew through the Pluto system at high speed, humanitys first close look at this enigmatic system on the outskirts of our solar system. In a series of papers, the New Horizons team present their analysis of the encounter data downloaded so far: Moore et al. present the complex surface features and geology of Pluto and its large moon Charon, including evidence of tectonics, glacial flow, and possible cryovolcanoes. Grundy et al. analyzed the colors and chemical compositions of their surfaces, with ices of H2O, CH4, CO, N2, and NH3 and a reddish material which may be tholins. Gladstone et al. investigated the atmosphere of Pluto, which is colder and more compact than expected and hosts numerous extensive layers of haze. Weaver et al. examined the small moons Styx, Nix, Kerberos, and Hydra, which are irregularly shaped, fast-rotating, and have bright surfaces. Bagenal et al. report how Pluto modifies its space environment, including interactions with the solar wind and a lack of dust in the system. Together, these findings massively increase our understanding of the bodies in the outer solar system. They will underpin the analysis of New Horizons data, which will continue for years to come. Science, this issue pp. 1284, 10.1126/science.aad9189, 10.1126/science.aad8866, 10.1126/science.aae0030, & 10.1126/science.aad9045 Pluto’s rapidly rotating small moons have bright icy surfaces with impact craters. INTRODUCTION The Pluto system is surprisingly complex, comprising six objects that orbit their common center of mass in approximately a single plane and in nearly circular orbits. When the New Horizons mission was selected for flight by NASA in 2001, only the two largest objects were known: the binary dwarf planets Pluto and Charon. Two much smaller moons, Nix and Hydra, were discovered in May 2005, just 8 months before the launch of the New Horizons spacecraft, and two even smaller moons, Kerberos and Styx, were discovered in 2011 and 2012, respectively. The entire Pluto system was likely produced in the aftermath of a giant impact between two Pluto-sized bodies approximately 4 to 4.5 billion years ago, with the small moons forming within the resulting debris disk. But many details remain unconfirmed, and the New Horizons results on Pluto’s small moons help to elucidate the conditions under which the Pluto system formed and evolved. RATIONALE Pluto’s small moons are difficult to observe from Earth-based facilities, with only the most basic visible and near-infrared photometric measurements possible to date. The New Horizons flyby enabled a whole new category of measurements of Pluto’s small moons. The Long Range Reconnaissance Imager (LORRI) provided high–spatial resolution panchromatic imaging, with thousands of pixels across the surfaces of Nix and Hydra and the first resolved images of Kerberos and Styx. In addition, LORRI was used to conduct systematic monitoring of the brightness of all four small moons over several months, from which the detailed rotational properties could be deduced. The Multispectral Visible Imaging Camera (MVIC) provided resolved color measurements of the surfaces of Nix and Hydra. The Linear Etalon Imaging Spectral Array (LEISA) captured near-infrared spectra (in the wavelength range 1.25 to 2.5 μm) of all the small moons for compositional studies, but those data have not yet been sent to Earth. RESULTS All four of Pluto’s small moons are highly elongated objects with surprisingly high surface reflectances (albedos) suggestive of a water-ice surface composition. Kerberos appears to have a double-lobed shape, possibly formed by the merger of two smaller bodies. Crater counts for Nix and Hydra imply surface ages of at least 4 billion years. Nix and Hydra have mostly neutral (i.e., gray) colors, but an apparent crater on Nix’s surface is redder than the rest of the surface; this finding suggests either that the impacting body had a different composition or that material with a different composition was excavated from below Nix’s surface. All four small moons have rotational periods much shorter than their orbital periods, and their rotational poles are clustered nearly orthogonal to the direction of the common rotational poles of Pluto and Charon. CONCLUSION Pluto’s small moons exhibit rapid rotation and large rotational obliquities, indicating that tidal despinning has not played the dominant role in their rotational evolution. Collisional processes are implicated in determining the shapes of the small moons, but collisional evolution was probably limited to the first several hundred million years after the system’s formation. The bright surfaces of Pluto’s small moons suggest that if the Pluto-Charon binary was produced during a giant collision, the two precursor bodies were at least partially differentiated with icy surface layers. Pluto’s family of satellites. NASA’s New Horizons mission has resolved Pluto’s four small moons, shown in order of their orbital distance from Pluto (from left to right). Nix and Hydra have comparable sizes (with equivalent spherical diameters of ~40 km) and are much larger than Styx and Kerberos (both of which have equivalent spherical diameters of ~10 km). All four of these moons are highly elongated and are dwarfed in size by Charon, which is nearly spherical with a diameter of 1210 km. The scale bars apply to all images. The New Horizons mission has provided resolved measurements of Pluto’s moons Styx, Nix, Kerberos, and Hydra. All four are small, with equivalent spherical diameters of ~40 kilometers for Nix and Hydra and ~10 kilometers for Styx and Kerberos. They are also highly elongated, with maximum to minimum axis ratios of ~2. All four moons have high albedos (~50 to 90%) suggestive of a water-ice surface composition. Crater densities on Nix and Hydra imply surface ages of at least 4 billion years. The small moons rotate much faster than synchronous, with rotational poles clustered nearly orthogonal to the common pole directions of Pluto and Charon. These results reinforce the hypothesis that the small moons formed in the aftermath of a collision that produced the Pluto-Charon binary.


The Astrophysical Journal | 2011

Seasonal Changes in Titan's Surface Temperatures

D. E. Jennings; V. Cottini; Conor A. Nixon; F. M. Flasar; V. G. Kunde; R. E. Samuelson; P. N. Romani; B. E. Hesman; R. C. Carlson; N. Gorius; Athena Coustenis; Tetsuya Tokano

Seasonal changes in Titan’s surface brightness temperatures have been observed by Cassini in the thermal infrared. The Composite Infrared Spectrometer measured surface radiances at 19 μm in two time periods: one in late northern winter (LNW; Ls = 335 ◦ ) and another centered on northern spring equinox (NSE; Ls = 0 ◦ ). In both periods we constructed pole-to-pole maps of zonally averaged brightness temperatures corrected for effects of the atmosphere. Between LNW and NSE a shift occurred in the temperature distribution, characterized by a warming of ∼0.5 K in the north and a cooling by about the same amount in the south. At equinox the polar surface temperatures were both near 91 K and the equator was at 93.4 K. We measured a seasonal lag of ΔLS ∼ 9 ◦ in the meridional surface temperature distribution, consistent with the post-equinox results of Voyager 1 as well as with predictions from general circulation modeling. A slightly elevated temperature is observed at 65 ◦ S in the relatively cloud-free zone


The Astrophysical Journal | 1994

Observations of 13.5 micron rotation-vibration lines of SiS in IRC +10216

Robert J. Boyle; John J. Keady; D. E. Jennings; K. L. Hirsch; Gunter Wiedemann

We report the first observations of the 13.5 micron fundamental band of SiS in the spectrum of the heavily obscured carbon star IRC +10216. The lines are formed in the inner region of the circumstellar envelope where the gas is accerlerating and where the temperature ranges from 800-500 K. We have carried out a detailed model of the observed line profiles. Our observations are best fit by a gradient in the abundance of SiS. We derive an abundance relative to molecular hydrogen of x(SiS) = 4.3 x 10(exp -6) at a distance of twelve stellar radii from the central star rising to x(SiS) = 4.3 x 10(exp -5) at a few stellar radii from the surface of the star.


Applied Optics | 1987

Infrared spectroscopy of the lower stratosphere with a balloon-borne cryogenic Fourier spectrometer.

Virgil G. Kunde; John C. Brasunas; Barney J. Conrath; R. A. Hanel; Jay R. Herman; D. E. Jennings; William C. Maguire; D. W. Walser; J. N. Annen; M. J. Silverstein; Montasir Mahgoub Abbas; L. W. Herath; H. L. Buijs; J. N. Berube; J. McKinnon

The IR limb emission of the lower stratosphere has been measured using a balloon-borne liquid nitrogencooled Michelson interferometer with liquid helium-cooled Si:Ga detectors. Portions of the thermal emission spectrum have been recorded between 650 and 2000 cm(-1) with an unapodized spectral resolution of 0.03 cm(-1). This is the highest spectral resolution limb emission thus far obtained. A preliminary description is given of these data along with a discussion of the significant features. Species identified to date include CO(2), O(3), CFCl(3), CF(2)Cl(2), H(2)O, CH(4), HNO(3), N(2)O, NO(2), and ClONO(2). A tentative identification is made for NO, representing the first direct spectroscopic detection of NO in emission.


Applied Optics | 1982

Tunable diode-laser heterodyne spectrometer for remote observations near 8 μm

D. Glenar; Theodor Kostiuk; D. E. Jennings; David Buhl; Michael J. Mumma

A diode-laser based ultrahigh resolution IR heterodyne spectrometer for laboratory and field use has been developed for operation between 7.5 and 8.5 microm. The local oscillator is a PbSe tunable diode laser kept continuously at operating temperatures of 12-60 K using a closed-cycle cooler. The laser output frequency is controlled and stabilized using a high-precision diode current supply, constant temperature controller, and a shock isolator mounted between the refrigerator cold tip and the diode mount. The system largely employs reflecting optics to minimize losses from internal reflection and absorption and to eliminate chromatic effects. Spectral analysis of the diode-laser output between 0 and 1 GHz reveals excess noise at many diode current settings, which limits the IR spectral regions over which useful heterodyne operation can be achieved. Observations have been made of atmospheric N(2)O, O(3), and CH(4) between 1170 and 1200 cm(-1) using both a single-frequency swept IF channel and a 64-channel rf spectral line receiver with a total IF coverage of 1600 MHz.


The Astrophysical Journal | 2013

Evolution of the Stratospheric Temperature and Chemical Composition over One Titanian Year

Athena Coustenis; G. Bampasidis; Richard Karl Achterberg; P. Lavvas; D. E. Jennings; Conor A. Nixon; Nicholas A. Teanby; Sandrine Vinatier; F. M. Flasar; R. C. Carlson; Glenn S. Orton; P. N. Romani; E. Guandique; S. Stamogiorgos

Since the Voyager 1 (V1) flyby in 1980, Titans exploration from space and the ground has been ongoing for more than a full revolution of Saturn around the Sun (one Titanian year or 29.5 Earth years had elapsed in 2010 May). In this study, we search for temporal variations affecting Titans atmospheric thermal and chemical structure within that year. We process Cassini/CIRS data taken during the Titan flybys from 2006-2013 and find a rather uneventful equatorial evolution. Conversely, at northern latitudes, we found enhanced abundances around the period of the northern spring equinox in mid-2009, which subsequently decreased (from 2010 to 2012), returning to values similar to those found in the V1 epoch, one Titanian year before. In the southern latitudes, since 2012, we see a trend for an increase of several trace gases (C4H2, C3H4, and HCN), indicative of a seasonal atmospheric reversal setting in. When we compare the CIRS 2010 and the 1980 V1/IRIS spectra (reanalyzed here), we find limited inter-annual variations. A return to the 1980 stratospheric temperatures and abundances is generally achieved from 50?N to 50?S, indicative of the solar radiation being the dominating energy source at 10 AU, as for the Earth, as predicted by general circulation and photochemical models. Exceptions concern the most complex hydrocarbons (C4H2 and C3H4). We also consider data from ground-based and Earth-orbiting observatories (such as from the Infrared Space Observatory, revisited here) and discuss possible atmospheric composition trends during a Titanian year.


The Astrophysical Journal | 2012

Thermal and Chemical Structure Variations in Titan's Stratosphere during the Cassini Mission

Georgios Bampasidis; Athena Coustenis; Richard Karl Achterberg; Sandrine Vinatier; P. Lavvas; Conor A. Nixon; D. E. Jennings; Nicholas A. Teanby; F. M. Flasar; Ronald Carlson; X. Moussas; P. Preka-Papadema; P. N. Romani; E. Guandique; S. Stamogiorgos

We have developed a line-by-line Atmospheric Radiative Transfer for Titan code that includes the most recent laboratory spectroscopic data and haze descriptions relative to Titans stratosphere. We use this code to model Cassini Composite Infrared Spectrometer data taken during the numerous Titan flybys from 2006 to 2012 at surface-intercepting geometry in the 600-1500 cm–1 range for latitudes from 50°S to 50°N. We report variations in temperature and chemical composition in the stratosphere during the Cassini mission, before and after the Northern Spring Equinox (NSE). We find indication for a weakening of the temperature gradient with warming of the stratosphere and cooling of the lower mesosphere. In addition, we infer precise concentrations for the trace gases and their main isotopologues and find that the chemical composition in Titans stratosphere varies significantly with latitude during the 6 years investigated here, with increased mixing ratios toward the northern latitudes. In particular, we monitor and quantify the amplitude of a maximum enhancement of several gases observed at northern latitudes up to 50°N around mid-2009, at the time of the NSE. We find that this rise is followed by a rapid decrease in chemical inventory in 2010 probably due to a weakening north polar vortex with reduced lateral mixing across the vortex boundary.


The Astrophysical Journal | 2010

The nu(8) bending mode of diacetylene: from laboratory spectroscopy to the detection of (13)C isotopologs in Titan's atmosphere

Antoine Jolly; André Fayt; Yves Benilan; D. Jacquemart; Conor A. Nixon; D. E. Jennings

The strong nu(8) band of diacetylene at 627.9 cm(-1) has been investigated to improve the spectroscopic line data used to model the observations, particularly in Titans atmosphere by Cassini/Composite Infrared Spectrometer. Spectra have first been recorded in the laboratory at 0.5 and 0.1 cm(-1) resolution and temperature as low as 193 K. Previous analysis and line lists present in the GEISA database appeared to be insufficient to model the measured spectra in terms of intensity and hot band features. To improve the situation and in order to be able to take into account all rovibrational transitions with a non-negligible intensity, a global analysis of C4H2 has been carried out to improve the description of the energy levels up to E-v = 1900 cm(-1). The result is a new extensive line list which enables us to model very precisely the temperature variation as well as the numerous hot band features observed in the laboratory spectra. One additional feature, observed at 622.3 cm(-1), was assigned to the nu(6) mode of a C-13 isotopologue of diacetylene. The nu(8) bands of both C-13 isotopomers were also identified in the 0.1 cm(-1) resolution spectrum. Finally, a C-13/C4H2 line list was added to the model for comparison with the observed spectra of Titan. We obtain a clear detection of C-13 monosubstituted diacetylene at 622.3 cm(-1) and 627.5 cm(-1) (blended nu(8) bands), deriving a mean C-12/C-13 isotopic ratio of 90 +/- 8. This value agrees with the terrestrial (89.4, inorganic standard) and giant planet values (88 +/- 7), but is only marginally consistent with the bulk carbon value in Titans atmosphere, measured in CH4 by Huygens GCMS to be 82 +/- 1, indicating that isotopic fractionation during chemical processing may be occurring, as suggested for ethane formation.

Collaboration


Dive into the D. E. Jennings's collaboration.

Top Co-Authors

Avatar

F. M. Flasar

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Gordon L. Bjoraker

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Conor A. Nixon

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. N. Romani

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

D. C. Reuter

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Richard P. Binzel

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge