D. E. Obert
Agricultural Research Service
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D. E. Obert.
BMC Genomics | 2011
Rebekah E. Oliver; Gerard R. Lazo; Joseph D. Lutz; Marc J Rubenfield; Nicholas A. Tinker; Joseph M. Anderson; Nicole H Wisniewski Morehead; Dinesh Adhikary; Eric N. Jellen; P. Jeffrey Maughan; Gina L Brown Guedira; Shiaoman Chao; Aaron D. Beattie; Martin L. Carson; H. W. Rines; D. E. Obert; J. Michael Bonman; Eric W. Jackson
BackgroundGenetic markers are pivotal to modern genomics research; however, discovery and genotyping of molecular markers in oat has been hindered by the size and complexity of the genome, and by a scarcity of sequence data. The purpose of this study was to generate oat expressed sequence tag (EST) information, develop a bioinformatics pipeline for SNP discovery, and establish a method for rapid, cost-effective, and straightforward genotyping of SNP markers in complex polyploid genomes such as oat.ResultsBased on cDNA libraries of four cultivated oat genotypes, approximately 127,000 contigs were assembled from approximately one million Roche 454 sequence reads. Contigs were filtered through a novel bioinformatics pipeline to eliminate ambiguous polymorphism caused by subgenome homology, and 96 in silico SNPs were selected from 9,448 candidate loci for validation using high-resolution melting (HRM) analysis. Of these, 52 (54%) were polymorphic between parents of the Ogle1040 × TAM O-301 (OT) mapping population, with 48 segregating as single Mendelian loci, and 44 being placed on the existing OT linkage map. Ogle and TAM amplicons from 12 primers were sequenced for SNP validation, revealing complex polymorphism in seven amplicons but general sequence conservation within SNP loci. Whole-amplicon interrogation with HRM revealed insertions, deletions, and heterozygotes in secondary oat germplasm pools, generating multiple alleles at some primer targets. To validate marker utility, 36 SNP assays were used to evaluate the genetic diversity of 34 diverse oat genotypes. Dendrogram clusters corresponded generally to known genome composition and genetic ancestry.ConclusionsThe high-throughput SNP discovery pipeline presented here is a rapid and effective method for identification of polymorphic SNP alleles in the oat genome. The current-generation HRM system is a simple and highly-informative platform for SNP genotyping. These techniques provide a model for SNP discovery and genotyping in other species with complex and poorly-characterized genomes.
PLOS ONE | 2013
Rebekah E. Oliver; Nicholas A. Tinker; Gerard R. Lazo; Shiaoman Chao; Eric N. Jellen; Martin L. Carson; H. W. Rines; D. E. Obert; Joseph D. Lutz; Irene Shackelford; Abraham B. Korol; Charlene P. Wight; Kyle M. Gardner; Jiro Hattori; Aaron D. Beattie; Åsmund Bjørnstad; J. Michael Bonman; Jean-Luc Jannink; Mark E. Sorrells; Gina Brown-Guedira; Jennifer Mitchell Fetch; Stephen A. Harrison; Catherine J. Howarth; Amir M. H. Ibrahim; Frederic L. Kolb; Michael S. McMullen; J. Paul Murphy; H. W. Ohm; B. G. Rossnagel; Weikai Yan
A physically anchored consensus map is foundational to modern genomics research; however, construction of such a map in oat (Avena sativa L., 2n = 6x = 42) has been hindered by the size and complexity of the genome, the scarcity of robust molecular markers, and the lack of aneuploid stocks. Resources developed in this study include a modified SNP discovery method for complex genomes, a diverse set of oat SNP markers, and a novel chromosome-deficient SNP anchoring strategy. These resources were applied to build the first complete, physically-anchored consensus map of hexaploid oat. Approximately 11,000 high-confidence in silico SNPs were discovered based on nine million inter-varietal sequence reads of genomic and cDNA origin. GoldenGate genotyping of 3,072 SNP assays yielded 1,311 robust markers, of which 985 were mapped in 390 recombinant-inbred lines from six bi-parental mapping populations ranging in size from 49 to 97 progeny. The consensus map included 985 SNPs and 68 previously-published markers, resolving 21 linkage groups with a total map distance of 1,838.8 cM. Consensus linkage groups were assigned to 21 chromosomes using SNP deletion analysis of chromosome-deficient monosomic hybrid stocks. Alignments with sequenced genomes of rice and Brachypodium provide evidence for extensive conservation of genomic regions, and renewed encouragement for orthology-based genomic discovery in this important hexaploid species. These results also provide a framework for high-resolution genetic analysis in oat, and a model for marker development and map construction in other species with complex genomes and limited resources.
Theoretical and Applied Genetics | 2008
Eric W. Jackson; D. E. Obert; M. Menz; Gongshe Hu; J. M. Bonman
Mapping disease resistance loci relies on the type and precision of phenotypic measurements. For crown rust of oat, disease severity is commonly assessed based on visual ratings of infection types (IT) and/or diseased leaf area (DLA) of infected plants in the greenhouse or field. These data can be affected by several variables including; (i) non-uniform disease development in the field; (ii) atypical symptom development in the greenhouse; (iii) the presence of multiple pathogenic races or pathotypes in the field, and (iv) rating bias. To overcome these limitations, we mapped crown rust resistance to single isolates in the Ogle/TAM O-301 (OT) recombinant inbred line (RIL) population using detailed measurements of IT, uredinia length (UL) and relative fungal DNA (FDNA) estimates determined by q-PCR. Measurements were taken on OT parents and recombinant inbred lines (RIL) inoculated with Puccinia coronata pathotypes NQMG and LGCG in separate greenhouse and field tests. Qualitative mapping identified an allele conferred by TAM O-301 on linkage group (LG) OT-11, which produced a bleached fleck phenotype to both NQMG and LGCG. Quantitative mapping identified two major quantitative trait loci (QTL) originating from TAM O-301 on LGs OT-11 and OT-32 which reduced UL and FDNA of both isolates in all experiments. Additionally, minor QTLs that reduced UL and FDNA were detected on LGs OT-15 and OT-8, originating from TAM O-301, and on LG OT-27, originating from Ogle. Detailed assessments of the OT population using two pathotypes in both the greenhouse and field provided comprehensive information to effectively map the genes responsible for crown rust resistance in Ogle and TAM O-301 to NQMG and LGCG.
Molecular Breeding | 2014
Emir Islamovic; D. E. Obert; Allen D. Budde; Mark R. Schmitt; Robert Brunick; Andrzej Kilian; Shiaoman Chao; Gerard R. Lazo; Juliet M. Marshall; Eric N. Jellen; Peter J. Maughan; Gongshe Hu; Kathy Esvelt Klos; Ryan H. Brown; Eric W. Jackson
Malting barley is of high economic and scientific importance. Determining barley grains that are suitable for malting involves measuring malting quality, which is an expensive and complex process. In order to decrease the cost of phenotyping and accelerate the process of developing superior malting barley cultivars, markers for marker-assisted breeding are needed. In this study, we identified quantitative trait loci (QTLs) for malting traits in a Stellar/01Ab8219 F6:8 recombinant inbred line population grown at Aberdeen and Tetonia, Idaho, USA in 2009 and 2010. We identified QTLs associated with malt extract (ME), wort protein, soluble/total protein (S/T), diastatic power (DP), alpha-amylase, beta-glucan (BG) and free amino nitrogen (FAN) at a logarithm of odds score ≥2.5 using a high-density genetic map produced by merging Diversity Arrays Technology markers with the current single nucleotide polymorphism map. Novel QTLs were identified for DP and FAN on chromosome 5H, S/T on 6H, and BG and ME on 7H. Dissection of the genetic regions associated with malting traits suggests the involvement of multiple molecular pathways. The resulting molecular markers may prove useful for barley improvement.
PLOS ONE | 2014
Rebekah E. Oliver; Emir Islamovic; D. E. Obert; Mitchell L. Wise; Lauri L. Herrin; An Hang; Stephen A. Harrison; Amir M. H. Ibrahim; Juliet M. Marshall; K Miclaus; Gerard R. Lazo; Gongshe Hu; Eric W. Jackson
Tocochromanols are recognized for nutritional content, plant stress response, and seed longevity. Here we present a systems biological approach to characterize and develop predictive assays for genes affecting tocochromanol variation in barley. Major QTL, detected in three regions of a SNP linkage map, affected multiple tocochromanol forms. Candidate genes were identified through barley/rice orthology and sequenced in genotypes with disparate tocochromanol profiles. Gene-specific markers, designed based on observed polymorphism, mapped to the originating QTL, increasing R2 values at the respective loci. Polymorphism within promoter regions corresponded to motifs known to influence gene expression. Quantitative PCR analysis revealed a trend of increased expression in tissues grown at cold temperatures. These results demonstrate utility of a novel method for rapid gene identification and characterization, and provide a resource for efficient development of barley lines with improved tocochromanol profiles.
Crop Science | 2010
Martha T. Hamblin; Timothy J. Close; Prasanna R. Bhat; Shiaoman Chao; J. G. Kling; K. Joseph Abraham; Tom Blake; W. S. Brooks; Blake Cooper; C. A. Griffey; Patrick M. Hayes; David J Hole; Richard D. Horsley; D. E. Obert; Kevin P. Smith; S. E. Ullrich; Gary J. Muehlbauer; Jean Luc Jannink
Molecular Breeding | 2013
Emir Islamovic; D. E. Obert; Rebekah E. Oliver; Stephen A. Harrison; Amir M. H. Ibrahim; Juliet M. Marshall; K Miclaus; Gongshe Hu; Eric W. Jackson
Crop Science | 2006
D. L. Hoffman; J. Chong; Eric W. Jackson; D. E. Obert
Molecular Breeding | 2000
D. E. Obert; D. Z. Skinner; D. L. Stuteville
Journal of Plant Registrations | 2008
Phil Bregitzer; Victor Raboy; D. E. Obert; J. M. Windes; J. C. Whitmore