Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D.E. Rico is active.

Publication


Featured researches published by D.E. Rico.


Journal of Dairy Science | 2014

Effect of a high-palmitic acid fat supplement on milk production and apparent total-tract digestibility in high- and low-milk yield dairy cows

D.E. Rico; Y. Ying; K.J. Harvatine

The effect of a high-palmitic acid fat supplement was tested in 12 high-producing (mean = 42.1 kg/d) and 12 low-producing (mean = 28.9 kg/d) cows arranged in a replicated 3 × 3 Latin square design. Experimental periods were 21 d, with 18d of diet adaptation and 3 d of sample collection. Treatments were (1) control (no supplemental fat), (2) high-palmitic acid (PA) supplement (84% C16:0), and (3) Ca salts of palm fatty acid (FA) supplement (Ca-FA). The PA supplement had no effect on milk production, but decreased dry matter intake by 7 and 9% relative to the control in high- and low-producing cows, respectively, and increased feed efficiency by 8.5% in high-producing cows compared with the control. Milk fat concentration and yield were not affected by PA relative to the control in high- or low-producing cows, although PA increased the yield of milk 16-C FA by more than 85 g/d relative to the control. The Ca-FA decreased milk fat concentration compared with PA in high-, but not in low-producing cows. In agreement, Ca-FA dramatically increased milk fat concentration of trans-10 C18:1 and trans-10, cis-12 conjugated linoleic acid (>300%) compared with PA in high-producing cows, but not in low-producing cows. No effect of treatment on milk protein concentration or yield was detected. The PA supplement also increased 16-C FA apparent digestibility by over 10% and increased total FA digestibility compared with the control in high- and low-producing cows. During short-term feeding, palmitic acid supplementation did not increase milk or milk fat yield; however, it was efficiently absorbed, increased feed efficiency, and increased milk 16-C FA yield, while minimizing alterations in ruminal biohydrogenation commonly observed for other unsaturated fat supplements. Longer-term experiments will be necessary to determine the effects on energy balance and changes in body reserves.


British Journal of Nutrition | 2015

Rapid changes in key ruminal microbial populations during the induction of and recovery from diet-induced milk fat depression in dairy cows.

D.E. Rico; S. H. Preston; J. M. Risser; K.J. Harvatine

The ruminant provides a powerful model for understanding the temporal dynamics of gastrointestinal microbial communities. Diet-induced milk fat depression (MFD) in the dairy cow is caused by rumen-derived bioactive fatty acids, and is commonly attributed to the changes in the microbial population. The aim of the present study was to determine the changes occurring in nine ruminal bacterial taxa with well-characterised functions, and abundance of total fungi, ciliate protozoa and bacteria during the induction of and recovery from MFD. Interactions between treatment and time were observed for ten of the twelve populations. The total number of both fungi and ciliate protozoa decreased rapidly (days 4 and 8, respectively) by more than 90% during the induction period and increased during the recovery period. The abundance of Streptococcus bovis (amylolytic) peaked at 350% of control levels on day 4 of induction and rapidly decreased during the recovery period. The abundance of Prevotella bryantii (amylolytic) decreased by 66% from day 8 to 20 of the induction period and increased to the control levels on day 12 of the recovery period. The abundance of Megasphaera elsdenii and Selenomonas ruminantium (lactate-utilising bacteria) increased progressively until day 12 of induction (>170%) and decreased during the recovery period. The abundance of Fibrobacter succinogenes (fibrolytic) decreased by 97% on day 4 of induction and increased progressively to an equal extent during the recovery period, although smaller changes were observed for other fibrolytic bacteria. The abundance of the Butyrivibrio fibrisolvens/Pseudobutyrivibrio group decreased progressively during the induction period and increased during the recovery period, whereas the abundance of Butyrivibrio hungatei was not affected by treatment. Responsive taxa were modified rapidly, with the majority of changes occurring within 8 d and their time course was similar to the time course of the induction of MFD, demonstrating a strong correlation between changes in ruminal microbial populations and MFD.


Journal of Dairy Science | 2012

Effects of partially replacing dietary starch with dry glycerol in a lactating cow diet on ruminal fermentation during continuous culture

D.E. Rico; Y.-H. Chung; C.M. Martinez; T.W. Cassidy; K.S. Heyler; G.A. Varga

The effects of dry glycerol as a partial replacement for dietary starch in a lactating cow diet on ruminal fermentation and bacterial protein synthesis were evaluated using 4 single-flow, continuous-culture fermentors (ranging from 1,015 to 1,040 mL in volume). The basal lactating cow diet was formulated to have partial contents of dietary starch provided from a corn starch supplement [at 12.37% diet dry matter (DM)], which was partially or completely replaced by a dry glycerol product. Both the corn starch supplement and dry glycerol product contained 65% of pure corn starch or glycerol, respectively. The final inclusion rate for pure glycerol was at 0, 3, 5, or 8% of DM in the basal diet. The experiment was conducted using a 4 × 4 Latin square design with four 9-d periods, with the first 6 d for adaptation and last 3 d for sampling. Fermentors were inoculated with 1L of ruminal fluid and 25 g of ruminal digesta from a ruminally cannulated cow receiving a lactation total mixed ration (16% crude protein, 32% neutral detergent fiber, and 25% starch; DM basis). Each fermentor was fed 75 g of DM of its respective experimental diet daily in 3 equal portions (at 0800, 1400, and 2000 h). Liquid dilution rate of the fermentors was maintained at 10%/h and solids retention time was set at 24 h. Fermentation fluid and the effluent from each fermentor were sampled once daily (at 1330 h) from d 7 to 9 of each period and pooled by period. Postprandial ruminal fermentation was studied by sampling the fermentors hourly for 5 h after the 0800 h feeding on d 9 of each period. The total fermentation contents were harvested at the end of the period for estimations of bacterial protein synthesis. Replacing corn starch with dry glycerol linearly increased the proportions of propionate and valerate at the expense of acetate in the fermentation fluid measured daily or for the first 5h after feeding. Replacing corn starch with dry glycerol also linearly increased the digestibility of dietary neutral detergent fiber without a change on the flow or efficiency of bacterial protein synthesis during continuous culture. Results indicate that glycerol as a dry product can replace dietary starch as corn starch at a level of up to 8% of DM in the diet without negatively affecting ruminal fermentation and digestibility during continuous culture.


Journal of Dairy Science | 2014

The effect of rumen digesta inoculation on the time course of recovery from classical diet-induced milk fat depression in dairy cows

D.E. Rico; Y. Ying; A.R. Clarke; K.J. Harvatine

Ten ruminally cannulated cows were used in a crossover design that investigated the effect of rumen digesta inoculation from non-milk fat-depressed cows on recovery from classical diet-induced milk fat depression (MFD) characterized by reduced fat yield, reduced de novo milk fat synthesis, and increased alternate trans isomers. Two additional cows fed a high-fiber and low-polyunsaturated fatty acid (FA) diet (31.8% neutral detergent fiber, 4.2% FA, and 1.2% C18:2) were used as rumen digesta donors. Milk fat depression was induced during the first 10d of each period by feeding a low-fiber and high-polyunsaturated FA diet (induction; 26.1% neutral detergent fiber, 5.8% FA, and 1.9% C18:2), resulting in a 30% decrease in milk fat yield. A recovery phase followed where all cows were switched to the high-forage, low-polyunsaturated FA diet and were allocated to (1) control (no inoculation) or (2) ruminal inoculation with donor cow digesta (8 kg/d for 6d). Milk yield and composition were measured every 3d. Milk yield progressively decreased during recovery. Milk fat concentration increased progressively during the recovery phase and no effect of treatment existed at any time point. Also, no treatment effect of milk fat yield was detected. The concentration of milk de novo FA increased progressively during recovery for both treatments and was higher for inoculated compared with control cows on d 6. In agreement, milk fat concentration of trans-10,cis-12 conjugated linoleic acid decreased progressively in both treatments and was lower in inoculated cows on d 3 and 6. Ruminal inoculation from non-milk fat-depressed cows did not change milk fat yield, but slightly accelerated the rate of recovery of de novo FA synthesis and normal ruminal FA biohydrogenation, demonstrating a possible opportunity for other interventions that improve the ruminal environment to accelerate recovery from this condition.


Journal of Dairy Science | 2014

Comparison of enriched palmitic acid and calcium salts of palm fatty acids distillate fat supplements on milk production and metabolic profiles of high-producing dairy cows

D.E. Rico; Y. Ying; K.J. Harvatine

A variable response to fat supplementation has been reported in dairy cows, which may be due to cow production level, environmental conditions, or diet characteristics. In the present experiment, the effect of a high palmitic acid supplement was investigated relative to a conventional Ca salts of palm fatty acids (Ca-FA) supplement in 16 high-producing Holstein cows (46.6±12.4kg of milk/d) arranged in a crossover design with 14-d periods. The experiment was conducted in a non-heat-stress season with 29.5% neutral detergent fiber diets. Treatments were (1) high palmitic acid (PA) supplement fed as free FA [1.9% of dry matter (DM); 84.8% C16:0] and (2) Ca-FA supplement (2.3% of DM; 47.7% C16:0, 35.9% C18:1, and 8.4% C18:2). The PA supplement tended to increase DM intake, and increased the yields of milk and energy-corrected milk. Additionally, PA increased the yields of milk fat, protein, and lactose, whereas milk concentrations of these components were not affected. The yields of milk de novo and 16-C FA were increased by PA compared with Ca-FA (7 and 20%, respectively), whereas the yield of preformed FA was higher in Ca-FA. A reduction in milk fat concentration of de novo and 16-C FA and a marginal elevation in trans-10 C18:1 in Ca-FA is indicative of altered ruminal biohydrogenation and increased risk of milk fat depression. No effect of treatment on plasma insulin was observed. A treatment by time interaction was detected for plasma nonesterified fatty acids (NEFA), which tended to be higher in Ca-FA than in PA before feeding. Overall, the palmitic acid supplement improved production performance in high-producing cows while posing a lower risk for milk fat depression compared with a supplement higher in unsaturated FA.


Journal of Dairy Science | 2014

Effect of monensin on recovery from diet-induced milk fat depression.

D.E. Rico; A.W. Holloway; K.J. Harvatine

The objective of the present experiment was to investigate the effect of monensin (MN) on the time course of recovery from diet-induced milk fat depression. Milk fat depression was induced in all cows (n = 16) during the first phase of each period by feeding a low-fiber, high-unsaturated fat diet [25.3% neutral detergent fiber (NDF), 6.9% fatty acids (FA), and 3.24% C18:2] with MN (450mg/cow per day) for 10 to 14d. A recovery phase of 18d followed, where cows were switched to a higher-fiber and lower unsaturated fat diet (31.2% NDF, 4.3% FA, and 1.7% C18:2). According to a crossover design, treatments during recovery were (1) control (no MN supplementation) or (2) continued MN supplementation. Milk yield, milk composition, and milk FA profile were measured every 3d during recovery. No effect was observed of MN on dry matter intake or yield of milk, milk protein, and lactose. Milk fat concentration and yield increased progressively during recovery in both treatments. Monensin decreased milk fat yield from d 6 to 15, but it was the same as the control on d 18. A treatment by time interaction on milk fat concentration was detected, which was decreased by MN only on d 3 and 6. The yield of milk de novo synthesized FA increased progressively in both treatments and was not affected by treatment. Similarly, yield of 16-C FA increased progressively, but was decreased by MN on d 6 and 9. Preformed FA yield was lower in the MN group from d 6 to 15, but was not different from the control on d 18. Importantly, milk FA concentration of trans-10 C18:1 and trans-10,cis-12 conjugated linoleic acid rapidly decreased in both groups; however, MN slightly increased trans-10 C18:1 concentration above baseline on d 15 and 18. In conclusion, MN supplementation had minimal effect on recovery of normal rumen biohydrogenation and de novo FA synthesis during recovery from milk fat depression by correction of dietary starch, NDF, and polyunsaturated FA concentration, but moderately decreased recovery of preformed FA in milk.


Journal of Dairy Science | 2014

Within-milking variation in milk composition and fatty acid profile of Holstein dairy cows

D.E. Rico; E.R. Marshall; J. Choi; K.E. Kaylegian; C.D. Dechow; K.J. Harvatine

Changes in milk composition during a milking are well characterized, but variation in milk fatty acid (FA) profile is not well described and may affect the accuracy of in-line milk composition analyzers and could potentially be used for selective segregation of milk. Within-milking samples were collected from 8 multiparous high-producing Holstein cows (54.86 ± 6.8 kg of milk/d; mean ± standard deviation). A milk-sampling device was designed to allow collection of multiple samples during a milking without loss of vacuum or interruption of milk subsampling. Milk was collected during consecutive morning and afternoon milkings (12-h intervals) and was replicated 1 wk later. Each sample represented approximately 20% of the milking and was analyzed for fat, true protein, and lactose concentration and FA profile. Milk fat concentration markedly increased over the course of milk let down (4.4 and 4.2 percentage units at the a.m. and p.m. milking, respectively), whereas milk fat globule size did not change. Milk protein and lactose concentration decreased slightly during milking. Modest changes in milk FA profile were also observed, as milk de novo and 16-C FA concentrations increased approximately 10 and 8%, respectively, whereas the concentration of preformed FA decreased about 7% during the milking. In agreement, mean milk FA chain length and unsaturation modestly decreased during milking (0.59 and 0.014 U, respectively). The observed changes in milk fat concentration during a milking are consistent with previous reports and reflect the dynamic nature of milk fat secretion from the mammary gland. Changes in milk FA profile are not expected to practically affect the accuracy of spectroscopy methods for determination of milk fat concentration. Furthermore, the small variation in FA profile during a milking limits the use of within-milking milk segregation to tailor milk FA profile.


Journal of Dairy Science | 2018

Alterations in ruminal bacterial populations at induction and recovery from diet-induced milk fat depression in dairy cows

Dipti Pitta; Nagaraju Indugu; Bonnie Vecchiarelli; D.E. Rico; K.J. Harvatine

Ten ruminally cannulated Holstein cows were used in a crossover design that investigated changes in ruminal bacterial populations in response to induction and recovery from diet-induced milk fat depression (MFD). Further, the effect on the ruminal microbiota of the cows with diet-induced milk fat depression inoculated with rumen contents from non-milk fat-depressed donor cows was evaluated. Milk fat depression was induced during the first 10 d of each period by feeding a low-fiber, high-starch, and high-polyunsaturated fatty acid diet (26.1% neutral detergent fiber, 28.1% starch, 5.8% total fatty acids, and 1.9% C18:2), resulting in a 30% decrease in milk fat yield. Induction was followed by a recovery phase, where all cows were switched to a high-fiber, low-starch, and low-polyunsaturated fatty acid diet (31.8% neutral detergent fiber, 23% starch, 4.2% total fatty acids, and 1.2% C18:2) and were allocated to (1) control (no inoculation) or (2) ruminal inoculation with donor cow digesta (8 kg/d for 6 d). Ruminal samples were collected at the end of induction (d 10) and during recovery (d 13, 16, and 28), separated to solid and liquid fractions, extracted for DNA, PCR- amplified for the V1-V2 region of the 16S rRNA gene, and analyzed for bacterial diversity. Results indicated that bacterial communities were different between fractions. In each fraction, differences were significant between the induction (d 10) and recovery (d 13, 16, and 28) periods; however, differences were less apparent with time during the recovery period. The MFD (d 10) was typified by a reduction in the relative sequence abundance of Bacteroidetes and an increase in the relative sequence abundance of Firmicutes and Actinobacteria across both fractions. At the genus level, relative sequence abundance of unclassified Lachnospiraceae, Butyrivibrio, Bulleidia, and Coriobacteriaceae were higher on d 10 and were positively correlated with trans-10,cis-12 CLA and the trans-10 isomer, suggesting their potential role in altered biohydrogenation reactions. A switch to the recovery diet resulted in a sharp increase in the Bacteroidetes lineages and a decrease in Firmicutes members on d 13; however, this shift appears to stabilize by d 28, indicating the restoration process for ruminal bacteria from an altered state is gradual and complex. Inoculation of 10% of rumen contents from non-MFD donor cows to MFD cows revealed this procedure had transient effects on only a few bacterial populations, and such effects disappeared after d 16 following cessation of inoculation. It can be concluded that alterations in milk FA profiles at induction are preceded by microbial alterations in the rumen driven by dietary changes.


Journal of Dairy Science | 2015

Effect of diet fermentability and unsaturated fatty acid concentration on recovery from diet-induced milk fat depression

D.E. Rico; A.W. Holloway; K.J. Harvatine

Diet-induced milk fat depression is caused by highly fermentable and high-unsaturated fatty acid (FA) diets, and results in reduced milk fat concentration and yield, reduced de novo FA, and increased trans isomers of the alternate biohydrogenation pathways. The hypothesis of the current experiment was that a diet higher in fermentability and lower in unsaturated FA (UFA) would accelerate recovery compared with a high-UFA and lower-fermentability diet. Eight ruminally cannulated and 9 noncannulated multiparous Holstein cows were randomly assigned to treatment sequences in a replicated Latin square design. During each period milk fat depression was induced for 10 d by feeding a low-fiber, high-UFA diet [25.9% neutral detergent fiber (NDF) and 3.3% C18:2]. Following the induction phase, cows were switched to recovery treatments for 18 d designed to correct dietary fermentability, UFA, or both fermentability and UFA concentration. Treatments during recovery were (1) correction of fiber and UFA diet [control; 31.8% NDF and 1.65% C18:2], (2) a diet predominantly correcting fiber, but not UFA [high oil (HO); 31.3% NDF and 2.99% C18:2], and (3) a diet predominantly correcting UFA, but not fiber concentration [low fiber (LF); 28.4% NDF and 1.71% C18:2]. Milk and milk component yield, milk FA profile, ruminal pH, and 11 rumen microbial taxa were measured every third day during recovery. Milk yield decreased progressively in HO and control, whereas it was maintained in the LF diet. Milk fat concentration increased progressively during recovery in all treatments, but was on average 9% lower in LF than control from d 12 to 18. Milk fat yield increased progressively in all treatments and was not different between control and LF at any time point, but was lower in HO than control on d 15. Milk trans-10 C18:1 and trans-10,cis-12 conjugated linoleic acid decreased progressively in all treatments, but was higher in HO than control from d 3 to 18 [136 ± 50 and 188 ± 57% (mean ± SD)], whereas LF caused a smaller increase in these FA compared with control (67 ± 25 and 90 ± 22%). Additionally, milk trans-11 C18:1 and cis-9,trans-11 conjugated linoleic acid was decreased in control and LF and increased in HO during recovery. Selected microbial species observed changed during recovery, but major treatment differences were only observed for Streptococcus bovis. The LF diet that was similar in UFA but 3.4% units lower in NDF compared with to the control had a similar decrease in alternate trans biohydrogenation intermediates in milk. The HO diet that was similar in NDF but 2.0% units higher in UFA compared with the control had higher alternate trans biohydrogenation intermediates in milk compared with control. However, recovery of milk fat yield was similar between treatments at most time points.


Journal of Dairy Science | 2017

Short communication: Effects of lysolecithin on milk fat synthesis and milk fatty acid profile of cows fed diets differing in fiber and unsaturated fatty acid concentration

D.E. Rico; Y. Ying; K.J. Harvatine

Thirteen multiparous Holstein cows were used in a crossover design that tested the effect of lysolecithin in diets differing in neutral detergent fiber (NDF) and unsaturated fatty acid (FA) concentrations. Experimental periods were 20 d in length and included two 10-d phases. A standard fiber and lower fat diet was fed the first 10 d (30.5% NDF, no added oil, lower-risk phase) and a lower NDF and higher oil diet was fed during the second 10 d (29.0% NDF and 2% oil from whole soybeans and soybean oil, high-risk phase). Treatments were control and 10 g/d of lysolecithin (LYSO) extended in a ground corn carrier. Milk was sampled on d 0, 5, and 10 of each phase for determination of fat and protein concentration and FA profile. We found no effect of treatment or treatment by time interaction for dry matter intake, milk yield, or milk protein concentration. A treatment by time interaction was observed for milk fat concentration and yield. Milk fat concentration was higher in LYSO on d 5 of the lower-risk phase, but decreased progressively in both treatments during the high-risk phase. Milk fat yield was not different among treatments during the lower-risk phase, but was lower in LYSO on d 15 and tended to be lower on d 20 during the high-risk phase. Concentrations of milk de novo FA decreased and preformed FA increased during the high-risk phase, but we found no effect of treatment or treatment by time interactions. We noted an effect of time, but no treatment or treatment by time interactions for milk trans FA isomers. Briefly, trans-11 C18:1 and cis-9,trans-11 conjugated linoleic acid progressively decreased as trans-10 C18:1 and trans-10,cis-12 conjugated linoleic acid progressively increased during the high-risk phase. The LYSO increased milk fat concentration when feeding a higher fiber and lower unsaturated FA diet, but decreased milk fat yield when feeding a lower fiber and higher unsaturated FA diet, although biohydrogenation pathways and capacity did not appear to be modified. The effect of lysolecithin on rumen fermentation warrants further investigation, but is not recommended when feeding lower fiber and higher unsaturated fat diets.

Collaboration


Dive into the D.E. Rico's collaboration.

Top Co-Authors

Avatar

K.J. Harvatine

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Y. Ying

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

A.R. Clarke

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

C.M. Martinez

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

G.A. Varga

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

T.W. Cassidy

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Y.-H. Chung

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C.D. Dechow

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Dipti Pitta

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge