Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. G. Coyne is active.

Publication


Featured researches published by D. G. Coyne.


The Astrophysical Journal | 2007

TeV gamma-ray sources from a survey of the Galactic plane with Milagro

A. A. Abdo; B. Allen; D. Berley; S. Casanova; C. Chen; D. G. Coyne; B. L. Dingus; R. W. Ellsworth; Lazar Fleysher; R. Fleysher; M. M. Gonzalez; J. A. Goodman; E. Hays; C. M. Hoffman; B. Hopper; P. Hüntemeyer; B. E. Kolterman; C. P. Lansdell; James Linnemann; J. E. McEnery; Allen Mincer; P. Nemethy; D. Noyes; J. Ryan; P. M. Saz Parkinson; A. Shoup; G. Sinnis; A. J. Smith; G. W. Sullivan; V. Vasileiou

A survey of Galactic gamma-ray sources at a median energy of ~20 TeV has been performed using the Milagro Gamma-Ray Observatory. Eight candidate sources of TeV emission are detected with pretrial significances >4.5 σ in the region of Galactic longitude l [30°, 220°] and latitude b [-10°, 10°]. Four of these sources, including the Crab Nebula and the recently published MGRO J2019+37, are observed with significances >4 σ after accounting for the trials. All four of these sources are also coincident with EGRET sources. Two of the lower significance sources are coincident with EGRET sources, and one of these sources is Geminga. The other two candidates are in the Cygnus region of the Galaxy. Several of the sources appear to be spatially extended. The fluxes of the sources at 20 TeV range from ~25% of the Crab flux to nearly as bright as the Crab.


The Astrophysical Journal | 2007

Discovery of TeV gamma-ray emission from the Cygnus region of the galaxy

A. A. Abdo; B. Allen; D. Berley; E. Blaufuss; S. Casanova; C. Chen; D. G. Coyne; R. S. Delay; B. L. Dingus; R. W. Ellsworth; Lazar Fleysher; R. Fleysher; I. Gebauer; M. M. Gonzalez; J. A. Goodman; E. Hays; C. M. Hoffman; B. E. Kolterman; L. A. Kelley; C. P. Lansdell; James Linnemann; J. E. McEnery; Allen Mincer; I. V. Moskalenko; P. Nemethy; D. Noyes; J. Ryan; F. W. Samuelson; P. M. Saz Parkinson; M. Schneider

The diffuse gamma radiation arising from the interaction of cosmic ray particles with matter and radiation in the Galaxy is one of the few probes available to study the origin of the cosmic rays. Milagro is a water Cherenkov detector that continuously views the entire overhead sky. The large field-of-view combined with the long observation time makes Milagro the most sensitive instrument available for the study of large, low surface brightness sources such as the diffuse gamma radiation arising from interactions of cosmic radiation with interstellar matter. In this paper we present spatial and flux measurements of TeV gamma-ray emission from the Cygnus Region. The TeV image shows at least one new source MGRO J2019+37 as well as correlations with the matter density in the region as would be expected from cosmic-ray proton interactions. However, the TeV gamma-ray flux as measured at {approx}12 TeV from the Cygnus region (after excluding MGRO J2019+37) exceeds that predicted from a conventional model of cosmic ray production and propagation. This observation indicates the existence of either hard-spectrum cosmic-ray sources and/or other sources of TeV gamma rays in the region.


The Astrophysical Journal | 2004

TeV Gamma-Ray Survey of the Northern Hemisphere Sky Using the Milagro Observatory

R. Atkins; W. Benbow; D. Berley; E. Blaufuss; J. Bussons; D. G. Coyne; T. DeYoung; B. L. Dingus; D. E. Dorfan; R. W. Ellsworth; Lazar Fleysher; R. Fleysher; Galen R. Gisler; M. M. Gonzalez; J. A. Goodman; E. Hays; C. M. Hoffman; L. A. Kelley; C. P. Lansdell; J. Linnemann; J. E. McEnery; R. S. Miller; Allen Mincer; Miguel F. Morales; P. Nemethy; D. Noyes; J. Ryan; F. W. Samuelson; A. Shoup; G. Sinnis

Milagro is a water Cerenkov extensive air shower array that continuously monitors the entire overhead sky in the TeV energy band. The results from an analysis of ~3 yr of data (2000 December-2003 November) are presented. The data have been searched for steady point sources of TeV gamma rays between declinations of 11 and 80°. Two sources are detected, the Crab Nebula and the active galaxy Mrk 421. For the remainder of the northern hemisphere, we set 95% confidence level (CL) upper limits between 275 and 600 mcrab (4.8 × 10-12 to 10.5 × 10-12 cm-2 s-1) above 1 TeV for source declinations between 5° and 70°. Since the sensitivity of Milagro depends on the spectrum of the source at the top of the atmosphere, the dependence of the limits on the spectrum of a candidate source is presented. Because high-energy gamma rays from extragalactic sources are absorbed by interactions with the extragalactic background light, the dependence of the flux limits on the redshift of a candidate source are given. The upper limits presented here are over an order of magnitude more stringent than previously published limits from TeV gamma-ray all-sky surveys.


The Astrophysical Journal | 2000

Evidence for T[CLC]e[/CLC]V Emission from GRB 970417[CLC]a[/CLC]

R. Atkins; W. Benbow; D. Berley; M. L. Chen; D. G. Coyne; B. L. Dingus; D. E. Dorfan; R. W. Ellsworth; D. Evans; A. Falcone; Lazar Fleysher; R. Fleysher; Galen R. Gisler; J. A. Goodman; C. M. Hoffman; S. Hugenberger; L. A. Kelley; I. Leonor; Mark L. McConnell; J. F. McCullough; J. E. McEnery; R. S. Miller; Allen Mincer; Miguel F. Morales; P. Nemethy; J. Ryan; B. C. Shen; A. Shoup; Constantine Sinnis; A. J. Smith

Milagrito, a detector sensitive to very high energy gamma rays, monitored the northern sky from 1997 February through 1998 May. With a large field of view and a high duty cycle, this instrument was well suited to perform a search for TeV gamma-ray bursts (GRBs). We report on a search made for TeV counterparts to GRBs observed by BATSE. BATSE detected 54 GRBs within the field of view of Milagrito during this period. An excess of events coincident in time and space with one of these bursts, GRB 970417a, was observed by Milagrito. The excess has a chance probability of 2.8 × 10-5 of being a fluctuation of the background. The probability for observing an excess at least this large from any of the 54 bursts is 1.5 × 10-3. No significant correlations were detected from the other bursts.


Physical Review Letters | 2005

Evidence for TeV Gamma-Ray Emission from a Region of the Galactic Plane

Richard J Atkins; W. Benbow; D. Berley; E. Blaufuss; D. G. Coyne; T. DeYoung; B. L. Dingus; D. E. Dorfan; R. W. Ellsworth; Lazar Fleysher; R. Fleysher; Galen R. Gisler; M. M. Gonzalez; J. A. Goodman; Thomas J. Haines; E. Hays; C. M. Hoffman; Loretta Anne Kelley; Casey Lansdell; James Linnemann; J. E. McEnery; R. S. Miller; Allen Mincer; María Fuensanta Morales; P. Nemethy; D. Noyes; James M. Ryan; F. W. Samuelson; P. M. Saz Parkinson; Angela G Shoup

Gamma-ray emission from a narrow band at the Galactic equator has previously been detected up to 30 GeV. We report evidence for a TeV gamma-ray signal from the Galactic plane by Milagro, a large field of view water Cherenkov detector for extensive air showers. An excess with a significance of 4.5 standard deviations has been observed from the region of Galactic longitude between 40 and 100 deg and latitude |b|<5 deg. Under the assumption of a simple power law spectrum, with no cutoff, in the EGRET-Milagro energy range, the measured integral flux is phi(>3.5TeV) = (6.4 +/- 1.4 +/- 2.1) 10^{-11} cm^{-2}s^{-1} str^{-1}. This flux is consistent with an extrapolation of the EGRET spectrum between 1 and 30 GeV in this Galactic region.


The Astrophysical Journal | 2003

The High-Energy Gamma-Ray Fluence and Energy Spectrum of GRB 970417a from Observations with Milagrito

R. Atkins; W. Benbow; D. Berley; Min Chen; D. G. Coyne; B. L. Dingus; D. E. Dorfan; R. W. Ellsworth; D. Evans; Abe D. Falcone; Lazar Fleysher; R. Fleysher; Galen R. Gisler; M. M. Gonzalez; J. A. Goodman; C. M. Hoffman; S. Hugenberger; L. A. Kelley; Spencer R. Klein; I. Leonor; J. McCullough; J. E. McEnery; R. S. Miller; Allen Mincer; M. F. Morales; P. Nemethy; J. Ryan; F. W. Samuelson; B. C. Shen; A. Shoup

Evidence of TeV emission from GRB 970417a has been previously reported using data from the Milagrito detector. Constraints on the TeV fluence and the energy spectrum are now derived using additional data from a scaler system that recorded the rate of signals from the Milagrito photomultipliers. This analysis shows that if emission from GRB 970417a has been observed, it must contain photons with energies above 650 GeV. Some consequences of this observation are discussed.Evidence of TeV emission from GRB970417a has been previously reported using data from the Milagrito detector. Constraints on the TeV fluence and the energy spectrum are now derived using additional data from a scaler system that recorded the rate of signals from the Milagrito photomultipliers. This analysis shows that if emission from GRB970417a has been observed, it must contain photons with energies above 650 GeV. Some consequences of this observation are discussed.


The Astrophysical Journal | 2003

Observation of GeV Solar Energetic Particles from the 1997 November 6 Event Using Milagrito

Abe D. Falcone; R. Atkins; W. Benbow; D. Berley; M. L. Chen; D. G. Coyne; B. L. Dingus; D. E. Dorfan; R. W. Ellsworth; Lazar Fleysher; R. Fleysher; Galen R. Gisler; J. A. Goodman; C. M. Hoffman; S. Hugenberger; L. A. Kelley; I. Leonor; J. F. McCullough; J. E. McEnery; R. S. Miller; Allen Mincer; M. F. Morales; P. Nemethy; J. Ryan; B. C. Shen; A. Shoup; G. Sinnis; A. J. Smith; G. W. Sullivan; T. Tumer

Milagrito was an extensive air-shower observatory that served as a prototype for the larger Milagro instrument. Milagrito operated from 1997 February to 1998 May. Although it was designed as a very high energy (few hundred GeV threshold) water-Cerenkov gamma-ray observatory, it could also be used to study solar energetic particles (SEPs). By recording scaler data, which correspond to photomultiplier tube singles rates, it was sensitive to muons and small showers from hadronic primary particles with rigidities above ~4 GV. Milagrito simultaneously recorded air-shower trigger data of primary particles with energies greater than ~100 GeV that provide the data to help reconstruct event directions. The Milagrito scalers registered a ground-level enhancement associated with the 1997 November 6 SEP event and X9 solar flare. At its peak, the enhancement was 22 times the background rms fluctuations. Based on comparisons to neutron monitor and satellite data, we find evidence that the rigidity power-law spectrum for the differential flux of energetic protons steepened above ~4 GV and that the acceleration site was high in the corona (at ~3 R☉ above the photosphere), assuming that a CME-driven shock was responsible for the ground-level enhancement.


The Astrophysical Journal | 2000

Evidence for TeV Emission from GRB 970417a

R. Atkins; W. Benbow; D. Berley; M. L. Chen; D. G. Coyne; B. L. Dingus; D. E. Dorfan; R. W. Ellsworth; D. Evans; A. Falcone; Lazar Fleysher; R. Fleysher; Galen R. Gisler; J. A. Goodman; T. J. Haines; C. M. Hoffman; S. Hugenberger; L. A. Kelley; I. Leonor; Mark L. McConnell; J. F. McCullough; J. E. McEnery; R. S. Miller; Allen Mincer; M. F. Morales; P. Nemethy; J. Ryan; Baochun Shen; A. Shoup; C. Sinnis

Milagrito, a detector sensitive to very high energy gamma rays, monitored the northern sky from 1997 February through 1998 May. With a large field of view and a high duty cycle, this instrument was well suited to perform a search for TeV gamma-ray bursts (GRBs). We report on a search made for TeV counterparts to GRBs observed by BATSE. BATSE detected 54 GRBs within the field of view of Milagrito during this period. An excess of events coincident in time and space with one of these bursts, GRB 970417a, was observed by Milagrito. The excess has a chance probability of 2.8x10-5 of being a fluctuation of the background. The probability for observing an excess at least this large from any of the 54 bursts is 1.5x10-3. No significant correlations were detected from the other bursts.


The Astrophysical Journal | 1993

Search for emission of ultra-high-energy radiation from active Galactic nuclei

D. E. Alexandreas; G. E. Allen; D. Berley; S. D. Biller; R. L. Burman; M. Cavalli-Sforza; C. Y. Chang; M. L. Chen; P. Chumney; D. G. Coyne; Dion C; G. M. Dion; D. E. Dorfan; R. W. Ellsworth; J. A. Goodman; C. M. Hoffman; L. Kelley; Spencer R. Klein; D. E. Nagle; S. C. Schaller; Richard W. Schnee; A. Shoup; Constantine Sinnis; M. J. Stark; D. D. Weeks; David A. Williams; J.-P. Wu; T. Yang; G. Yodh; W. Zhang

The CYGNUS air-shower array has been used to search for emission of ultra-high-energy gamma radiation from 13 active galactic nuclei (AGNs) that were detected by EGRET. The data set spans the period 1986 April 2 to 1993 January 1. The data set has been searched for continuous emission, for emission on the time scale of 1 week, and for emission on the time scale of 1 day. No evidence for emission from any of the AGNs on any of the time scales examined was found. The 90% Confidence Level (CL) upper limit to the continuous flux from Mrk 421 above 50 TeV is 7.5×10 -14 cm -1 s -1


The Astrophysical Journal | 1995

A Search for Ultra-High-Energy Gamma-Ray Emission from Five Supernova Remnants

G. E. Allen; D. Berley; S. Biller; R. L. Burman; M. Cavalli-Sforza; C. Y. Chang; M. L. Chen; P. Chumney; D. G. Coyne; Dion C; D. E. Dorfan; R. W. Ellsworth; J. A. Goodman; C. M. Hoffman; L. Kelley; S. Klein; D. M. Schmidt; Richard W. Schnee; A. Shoup; C. Sinnis; M. J. Stark; Dc Williams; J.-P. Wu; T. Yang; G. Yodh

The majority of the cosmic rays in our Galaxy with energies in the range of ~1010-1014 eV are thought to be accelerated in supernova remnants (SNRs). Measurements of SNR gamma-ray spectra in this energy region could support or contradict this concept. The Energetic Gamma-Ray Experiment Telescope (EGRET) collaboration has reported six sources of gamma rays above 108 eV whose coordinates are coincident with SNRs. Five of these sources are within the field of view of the CYGNUS extensive air shower detector. A search of the CYGNUS data set reveals no evidence of gamma-ray emission at energies ~1014 eV for these five SNRs. The flux upper limits from the CYGNUS data are compared to the lower energy fluxes measured with the EGRET detector using Drury, Aharonian, & Volks recent model of gamma-ray production in the shocks of SNRs. The results suggest one or more of the following: (1) the gamma-ray spectra for these five SNRs soften by about 1014 eV, (2) the integral gamma-ray spectra of the SNRs are steeper than about E-1.3, or (3) most of the gamma rays detected with the EGRET instrument for each SNR are not produced in the SNRs shock but are produced at some other site (such as a pulsar).

Collaboration


Dive into the D. G. Coyne's collaboration.

Top Co-Authors

Avatar

C. M. Hoffman

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. E. Dorfan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Shoup

University of California

View shared research outputs
Top Co-Authors

Avatar

B. L. Dingus

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lazar Fleysher

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge