Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D Godfrey is active.

Publication


Featured researches published by D Godfrey.


Physics in Medicine and Biology | 2003

Digital x-ray tomosynthesis: current state of the art and clinical potential.

James T. Dobbins; D Godfrey

Digital x-ray tomosynthesis is a technique for producing slice images using conventional x-ray systems. It is a refinement of conventional geometric tomography, which has been known since the 1930s. In conventional geometric tomography, the x-ray tube and image receptor move in synchrony on opposite sides of the patient to produce a plane of structures in sharp focus at the plane containing the fulcrum of the motion; all other structures above and below the fulcrum plane are blurred and thus less visible in the resulting image. Tomosynthesis improves upon conventional geometric tomography in that it allows an arbitrary number of in-focus planes to be generated retrospectively from a sequence of projection radiographs that are acquired during a single motion of the x-ray tube. By shifting and adding these projection radiographs, specific planes may be reconstructed. This topical review describes the various reconstruction algorithms used to produce tomosynthesis images, as well as approaches used to minimize the residual blur from out-of-plane structures. Historical background and mathematical details are given for the various approaches described. Approaches for optimizing the tomosynthesis image are given. Applications of tomosynthesis to various clinical tasks, including angiography, chest imaging, mammography, dental imaging and orthopaedic imaging, are also described.


Medical Physics | 2008

Digital tomosynthesis of the chest for lung nodule detection: Interim sensitivity results from an ongoing NIH‐sponsored trial

James T. Dobbins; H. Page McAdams; Jae-Woo Song; Christina M. Li; D Godfrey; David M. DeLong; Sang-Hyun Paik; Santiago Martinez-Jimenez

The authors report interim clinical results from an ongoing NIH-sponsored trial to evaluate digital chest tomosynthesis for improving detectability of small lung nodules. Twenty-one patients undergoing computed tomography (CT) to follow up lung nodules were consented and enrolled to receive an additional digital PA chest radiograph and digital tomosynthesis exam. Tomosynthesis was performed with a commercial CsI/a-Si flat-panel detector and a custom-built tube mover. Seventy-one images were acquired in 11 s, reconstructed with the matrix inversion tomosynthesis algorithm at 5-mm plane spacing, and then averaged (seven planes) to reduce noise and low-contrast artifacts. Total exposure for tomosynthesis imaging was equivalent to that of 11 digital PA radiographs (comparable to a typical screen-film lateral radiograph or two digital lateral radiographs). CT scans (1.25-mm section thickness) were reviewed to confirm presence and location of nodules. Three chest radiologists independently reviewed tomosynthesis images and PA chest radiographs to confirm visualization of nodules identified by CT. Nodules were scored as: definitely visible, uncertain, or not visible. 175 nodules (diameter range 3.5-25.5 mm) were seen by CT and grouped according to size: < 5, 5-10, and > 10 mm. When considering as true positives only nodules that were scored definitely visible, sensitivities for all nodules by tomosynthesis and PA radiography were 70% (+/- 5%) and 22% (+/- 4%), respectively, (p < 0.0001). Digital tomosynthesis showed significantly improved sensitivity of detection of known small lung nodules in all three size groups, when compared to PA chest radiography.


Journal of Thoracic Imaging | 2008

Digital tomosynthesis of the chest.

James T. Dobbins; H. Page McAdams; D Godfrey; Christina M. Li

Digital tomosynthesis is a technique that generates an arbitrary number of section images of a patient from a single pass of the x-ray tube. It is under investigation for application to a number of clinical detection tasks, and has recently been implemented in commercial devices for chest radiography. Tomosynthesis provides improved visibility of structures in the chest, such as pulmonary nodules, airways, and spine. This review article outlines the components of a typical tomosynthesis system, and presents examples of improved pulmonary nodule detection from a clinical trial in human subjects. Possible implementation strategies for use in chest imaging are discussed.


Medical Physics | 2006

Optimization of the matrix inversion tomosynthesis (MITS) impulse response and modulation transfer function characteristics for chest imaging

D Godfrey; H. P. McAdams; James T. Dobbins

Matrix inversion tomosynthesis (MITS) uses linear systems theory, along with a priori knowledge of the imaging geometry, to deterministically distinguish between true structure and overlying tomographic blur in a set of conventional tomosynthesis planes. In this paper we examine the effect of total scan angle (ANG), number of input projections (N), and plane separation/number of reconstructed planes (NP) on the MITS impulse response (IR) and modulation transfer function (MTF), with the purpose of optimizing MITS imaging of the chest. MITS IR and MTF data were generated by simulating the imaging of a very thin wire, using various combinations of ANG, N, and NP. Actual tomosynthesis data of an anthropomorphic chest phantom were acquired with a prototype experimental system, using the same imaging parameter combinations as those in the simulations. Thoracic projection data from two human subjects were collected for corroboration of the system response analysis in vivo. Results suggest that ANG=20 degrees, N=71, NP=69 is the optimal combination for MITS chest imaging given the inherent constraints of our prototype system. MITS chest data from human subjects demonstrates that the selected imaging strategy can effectively produce high-quality MITS thoracic images in vivo.


Medical Imaging 2003: Physics of Medical Imaging | 2003

Practical strategies for the clinical implementation of matrix inversion tomosynthesis (MITS)

D Godfrey; Amber Rader; James T. Dobbins

Digital tomosynthesis is a method that enables the retroactive reconstruction of arbitrary tomographic planes in an object from a finite series of digital projection radiographs, acquired with limited angle tube movement. Conventional tomosynthesis suffers from the presence of blurring artifacts, created by objects located outside of each reconstructed plane. Matrix inversion tomosynthesis (MITS) utilizes known acquisition geometry to solve directly for the unwanted out-of-plane blur artifacts, thus enabling their removal. This paper examines practical strategies for the implementation of MITS in a clinical setting, on a flat-panel fast-readout detector, with the aim of minimizing procedure time and image reconstruction artifacts concurrently. Topics include a comparison of continuous vs. incremental tube motion, the presence of reconstruction artifacts due to error in computing the x-ray tube location, the effect of scrubbing the detector between projections to reduce image retention, and a method for accounting for data that gets projected off the detector. We conclude that MITS is robust enough to be clinically applicable, even under less-than-ideal conditions. Rapid image acquisition with continuous tube movement and no detector scrubbing is clinically desirable for MITS imaging of the chest, where patient motion is a concern. Knowledge of the source-detector geometry can be satisfactorily determined via either a lead fiducial marker placed on the patient, or a tube motion device with sufficient precision and accuracy. Extrapolation of data at the top and bottom of projection images provides excellent amelioration of image truncation artifacts.


International Journal of Radiation Oncology Biology Physics | 2009

Comparing Digital Tomosynthesis to Cone-beam CT for Position Verification in Patients Undergoing Partial Breast Irradiation

Junan Zhang; Q. Jackie Wu; D Godfrey; Toyosi Fatunase; Lawrence B. Marks; Fang-Fang Yin

PURPOSE To evaluate digital tomosynthesis (DTS) technology for daily positioning of patients receiving accelerated partial breast irradiation (APBI) and to compare the positioning accuracy of DTS to three-dimensional cone-beam computed tomography (CBCT). METHODS AND MATERIALS Ten patients who underwent APBI were scanned daily with on-board CBCT. A subset of the CBCT projections was used to reconstruct a stack of DTS image slices. To optimize soft-tissue visibility, the DTS images were reconstructed in oblique directions so that the tumor bed, breast tissue, ribs, and lungs were well separated. Coronal and sagittal DTS images were also reconstructed. Translational shifts of DTS images were obtained on different days from the same patients and were compared with the translational shifts of corresponding CBCT images. Seventy-seven CBCT scans and 291 DTS scans were obtained from nine evaluable patients. RESULTS Tumor beds were best visible in the oblique DTS scans. One-dimensional positioning differences between DTS and CBCT images were 0.8-1.7 mm for the six patients with clips present and 1.2-2.0 mm for the three patients without clips. Because of the limited DTS scan angle, the DTS registration accuracy along the off-plane direction is lower than the accuracy along the in-plane directions. CONCLUSIONS For patients receiving APBI, DTS localization offers comparable accuracy to CBCT localization for daily patient positioning while reducing mechanical constraints and imaging dose.


IEEE Sensors Journal | 2008

An Implantable MOSFET Dosimeter for the Measurement of Radiation Dose in Tissue During Cancer Therapy

Gloria P. Beyer; G Mann; Jan A. Pursley; Eric T. Espenhahn; Caroline Fraisse; D Godfrey; M Oldham; Tammy B. Carrea; Natasha Bolick; C.W. Scarantino

This paper describes the functionality, radiation characteristics, and clinical implementation of an implantable MOSFET radiation detector (dosimeter). The dosimeter is powered by radio frequency telemetry eliminating the need for a power source inside the dosimeter. The data can be accessed telemetrically for each treatment day during the course of therapy. The detector has been validated in vitro to confirm its accuracy. Variance between predicted and measured dose in patients is discussed. Factors such as patient setup, treatment plan error, and physiologic motion can affect the accuracy of dose delivery in moving from in vitro to in vivo dose measurements. The initial data suggests that the dosimeters can play a useful role in tracking dose discrepancies, both random and systematic, in patients treated with external beam radiation therapy. The implantable dosimeter can be used, together with the current radiation delivery and planning techniques, to optimize radiation treatment on an individual basis.


Medical Physics | 2007

Accelerating reconstruction of reference digital tomosynthesis using graphics hardware

Hui Yan; L Ren; D Godfrey; Fang-Fang Yin

The successful implementation of digital tomosynthesis (DTS) for on-board image guided radiation therapy (IGRT) requires fast DTS image reconstruction. Both target and reference DTS image sets are required to support an image registration application for IGRT. Target images are usually DTS image sets reconstructed from on-board projections, which can be accomplished quickly using the conventional filtered backprojection algorithm. Reference images are DTS image sets reconstructed from digitally reconstructed radiographs (DRRs) previously generated from conventional planning CT data. Generating a set of DRRs from planning CT is relatively slow using the conventional ray-casting algorithm. In order to facilitate DTS reconstruction within a clinically acceptable period of time, we implemented a high performance DRR reconstruction algorithm on a graphics processing unit of commercial PC graphics hardware. The performance of this new algorithm was evaluated and compared with that which is achieved using the conventional software-based ray-casting algorithm. DTS images were reconstructed from DRRs previously generated by both hardware and software algorithms. On average, the DRR reconstruction efficiency using the hardware method is improved by a factor of 67 over the software method. The image quality of the DRRs was comparable to those generated using the software-based ray-casting algorithm. Accelerated DRR reconstruction significantly reduces the overall time required to produce a set of reference DTS images from planning CT and makes this technique clinically practical for target localization for radiation therapy.


Medical Physics | 2007

Evaluation of three types of reference image data for external beam radiotherapy target localization using digital tomosynthesis (DTS)

D Godfrey; L Ren; Hui Yan; Qiuwen Wu; S Yoo; M Oldham; Fang-Fang Yin

Digital tomosynthesis (DTS) is a fast, low-dose three-dimensional (3D) imaging approach which yields slice images with excellent in-plane resolution, though low plane-to-plane resolution. A stack of DTS slices can be reconstructed from a single limited-angle scan, with typical scan angles ranging from 10 degrees to 40 degrees and acquisition times of less than 10 s. The resulting DTS slices show soft tissue contrast approaching that of full cone-beam CT. External beam radiotherapy target localization using DTS requires the registration of on-board DTS images with corresponding reference image data. This study evaluates three types of reference volume: original reference CT, exact reference DTS (RDTS), and a more computationally efficient approximate reference DTS (RDTSapprox), as well as three different DTS scan angles (22 degrees, 44 degrees, and 65 degrees) for the DTS target localization task. Three-dimensional mutual information (MI) shared between reference and onboard DTS volumes was computed in a region surrounding the spine of a chest phantom, as translations spanning +/-5 mm and rotations spanning +/-5 degrees were simulated along each dimension in the reference volumes. The locations of the MI maxima were used as surrogates for registration accuracy, and the width of the MI peaks were used to characterize the registration robustness. The results show that conventional treatment planning CT volumes are inadequate reference volumes for direct registration with on-board DTS data. The efficient RDTSapprox method also appears insufficient for MI-based registration without further refinement of the technique, though it may be suitable for manual registration performed by a human observer. The exact RDTS volumes, on the other hand, delivered a 3D DTS localization accuracy of 0.5 mm and 0.50 along each axis, using only a single 44 degrees coronal on-board DTS scan of the chest phantom.


Medical Physics | 2008

On-board four-dimensional digital tomosynthesis : First experimental results

J Maurer; D Godfrey; Zhiheng Wang; Fang-Fang Yin

The purpose of this study is to propose four-dimensional digital tomosynthesis (4D-DTS) for on-board analysis of motion information in three dimensions. Images of a dynamic motion phantom were reconstructed using acquisition scan angles ranging from 20 degrees (DTS) to full 360 degrees cone-beam computed tomography (CBCT). Projection images were acquired using an on-board imager mounted on a clinical linear accelerator. Three-dimensional (3D) images of the moving target were reconstructed for various scan angles. 3D respiratory correlated phase images were also reconstructed. For phase-based image reconstructions, the trajectory of a radiopaque marker was tracked in projection space and used to retrospectively assign respiratory phases to projections. The projections were then sorted according phase and used to reconstruct motion correlated images. By using two sets of projections centered about anterior-posterior and lateral axes, this study demonstrates how phase resolved coronal and sagittal DTS images can be used to obtain 3D motion information. Motion artifacts in 4D-DTS phase images are compared with those present in four-dimensional CT (4DCT) images. Due to the nature of data acquisition for the two modalities, superior-inferior motion artifacts are suppressed to a greater extent in 4D-DTS images compared with 4DCT. Theoretical derivations and experimental results are presented to demonstrate how optimal selection of image acquisition parameters including the frequency of projection acquisition and the phase window depend on the respiratory period. Two methods for acquiring projections are discussed. Preliminary results indicate that 4D-DTS can be used to acquire valuable kinetic information of internal anatomy just prior to radiation treatment.

Collaboration


Dive into the D Godfrey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A Baydush

Wake Forest University

View shared research outputs
Researchain Logo
Decentralizing Knowledge