Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S Yoo is active.

Publication


Featured researches published by S Yoo.


Medical Physics | 2006

A quality assurance program for the on-board imager ®

S Yoo; G Kim; R Hammoud; Eric Elder; Todd Pawlicki; H Guan; T. Fox; Gary Luxton; Fang-Fang Yin; Peter Munro

To develop a quality assurance (QA) program for the On-Board Imager (OBI) system and to summarize the results of these QA tests over extended periods from multiple institutions. Both the radiographic and cone-beam computed tomography (CBCT) mode of operation have been evaluated. The QA programs from four institutions have been combined to generate a series of tests for evaluating the performance of the On-Board Imager. The combined QA program consists of three parts: (1) safety and functionality, (2) geometry, and (3) image quality. Safety and functionality tests evaluate the functionality of safety features and the clinical operation of the entire system during the tube warm-up. Geometry QA verifies the geometric accuracy and stability of the OBI/CBCT hardware/software. Image quality QA monitors spatial resolution and contrast sensitivity of the radiographic images. Image quality QA for CBCT includes tests for Hounsfield Unit (HU) linearity, HU uniformity, spatial linearity, and scan slice geometry, in addition. All safety and functionality tests passed on a daily basis. The average accuracy of the OBI isocenter was better than 1.5mm with a range of variation of less than 1mm over 8 months. The average accuracy of arm positions in the mechanical geometry QA was better than 1mm, with a range of variation of less than 1mm over 8 months. Measurements of other geometry QA tests showed stable results within tolerance throughout the test periods. Radiographic contrast sensitivity ranged between 2.2% and 3.2% and spatial resolution ranged between 1.25 and 1.6lp∕mm. Over four months the CBCT images showed stable spatial linearity, scan slice geometry, contrast resolution (1%; <7mm disk) and spatial resolution (>6lp∕cm). The HU linearity was within ±40HU for all measurements. By combining test methods from multiple institutions, we have developed a comprehensive, yet practical, set of QA tests for the OBI system. Use of the tests over extended periods show that the OBI system has reliable mechanical accuracy and stable image quality. Nevertheless, the tests have been useful in detecting performance deficits in the OBI system that needed recalibration. It is important that all tests are performed on a regular basis.


International Journal of Radiation Oncology Biology Physics | 2010

Radiotherapy treatment plans with RapidArc for prostate cancer involving seminal vesicles and lymph nodes.

S Yoo; Q. Jackie Wu; W. Robert Lee; Fang-Fang Yin

PURPOSE Dosimetric results and treatment delivery efficiency of RapidArc plans to those of conventional intensity-modulated radiotherapy (IMRT) plans were compared using the Eclipse treatment planning system for high-risk prostate cancer. MATERIALS AND METHODS This study included 10 patients. The primary planning target volume (PTV(P)) contained prostate, seminal vesicles, and pelvic lymph nodes with a margin. The boost PTV (PTV(B)) contained prostate and seminal vesicles with a margin. The total prescription dose was 75.6 Gy (46.8 Gy to PTV(P) and an additional 28.8 Gy to PTV(B); 1.8 Gy/fraction). Three plans were generated for each PTV: Multiple-field IMRT, one-arc RapidArc (1ARC), and two-arc RapidArc (2ARC). RESULTS In the primary IMRT with PTV(P), average mean doses to bladder, rectum and small bowel were lower by 5.9%, 7.7% and 4.3%, respectively, than in the primary 1ARC and by 3.6%, 4.8% and 3.1%, respectively, than in the primary 2ARC. In the boost IMRT with PTV(B), average mean doses to bladder and rectum were lower by 2.6% and 4.8% than with the boost 1ARC and were higher by 0.6% and 0.2% than with the boost 2ARC. Integral doses were 7% to 9% higher with RapidArc than with IMRT for both primary and boost plans. Treatment delivery time was reduced by 2-7 minutes using RapidArc. CONCLUSION For PTVs including prostate, seminal vesicles, and lymph nodes, IMRT performed better in dose sparing for bladder, rectum, and small bowel than did RapidArc. For PTVs including prostate and seminal vesicles, RapidArc with two arcs provided plans comparable to those for IMRT. The treatment delivery is more efficient with RapidArc.


Medical Physics | 2012

Quality assurance for image-guided radiation therapy utilizing CT-based technologies: A report of the AAPM TG-179

Jean-Pierre Bissonnette; P Balter; Lei Dong; Katja M. Langen; D. Michael Lovelock; Moyed Miften; D Moseley; Jean Pouliot; Jan Jakob Sonke; S Yoo

PURPOSE Commercial CT-based image-guided radiotherapy (IGRT) systems allow widespread management of geometric variations in patient setup and internal organ motion. This document provides consensus recommendations for quality assurance protocols that ensure patient safety and patient treatment fidelity for such systems. METHODS The AAPM TG-179 reviews clinical implementation and quality assurance aspects for commercially available CT-based IGRT, each with their unique capabilities and underlying physics. The systems described are kilovolt and megavolt cone-beam CT, fan-beam MVCT, and CT-on-rails. A summary of the literature describing current clinical usage is also provided. RESULTS This report proposes a generic quality assurance program for CT-based IGRT systems in an effort to provide a vendor-independent program for clinical users. Published data from long-term, repeated quality control tests form the basis of the proposed test frequencies and tolerances. CONCLUSION A program for quality control of CT-based image-guidance systems has been produced, with focus on geometry, image quality, image dose, system operation, and safety. Agreement and clarification with respect to reports from the AAPM TG-101, TG-104, TG-142, and TG-148 has been addressed.


International Journal of Radiation Oncology Biology Physics | 2009

Volumetric Arc Intensity–Modulated Therapy for Spine Body Radiotherapy: Comparison With Static Intensity-Modulated Treatment

Q. Jackie Wu; S Yoo; John P. Kirkpatrick; D Thongphiew; Fang-Fang Yin

PURPOSE This clinical study evaluates the feasibility of using volumetric arc-modulated treatment (VMAT) for spine stereotactic body radiotherapy (SBRT) to achieve highly conformal dose distributions that spare adjacent organs at risk (OAR) with reduced treatment time. METHODS AND MATERIALS Ten spine SBRT patients were studied retrospectively. The intensity-modulated radiotherapy (IMRT) and VMAT plans were generated using either one or two arcs. Planning target volume (PTV) dose coverage, OAR dose sparing, and normal tissue integral dose were measured and compared. Differences in treatment delivery were also analyzed. RESULTS The PTV DVHs were comparable between VMAT and IMRT plans in the shoulder (D(99%)-D(90%)), slope (D(90%)-D(10%)), and tail (D(10%)-D(1%)) regions. Only VMAT(2arc) had a better conformity index than IMRT (1.09 vs. 1.15, p = 0.007). For cord sparing, IMRT was the best, and VMAT(1arc) was the worst. Use of IMRT achieved greater than 10% more D(1%) sparing for six of 10 cases and 7% to 15% more D(10%) sparing over the VAMT(1arc). The differences between IMRT and VAMT(2arc) were smaller and statistically nonsignificant at all dose levels. The differences were also small and statistically nonsignificant for other OAR sparing. The mean monitor units (MUs) were 8711, 7730, and 6317 for IMRT, VMAT(1arc), and VMAT(2arc) plans, respectively, with a 26% reduction from IMRT to VMAT(2arc). The mean treatment time was 15.86, 8.56, and 7.88 min for IMRT, VMAT(1arc,) and VMAT(2arc). The difference in integral dose was statistically nonsignificant. CONCLUSIONS Although VMAT provided comparable PTV coverage for spine SBRT, 1arc showed significantly worse spinal cord sparing compared with IMRT, whereas 2arc was comparable to IMRT. Treatment efficiency is substantially improved with the VMAT.


International Journal of Radiation Oncology Biology Physics | 2008

Intensity-Modulated Radiotherapy for Resected Mesothelioma: The Duke Experience

Edward F. Miles; Nicole Larrier; Chris R. Kelsey; Jessica L. Hubbs; Jinli Ma; S Yoo; Lawrence B. Marks

PURPOSE To assess the safety and efficacy of intensity-modulated radiotherapy (IMRT) after extrapleural pneumonectomy for malignant pleural mesothelioma. METHODS AND MATERIALS Thirteen patients underwent IMRT after extrapleural pneumonectomy between July 2005 and February 2007 at Duke University Medical Center. The clinical target volume was defined as the entire ipsilateral hemithorax, chest wall incisions, including drain sites, and involved nodal stations. The dose prescribed to the planning target volume was 40-55 Gy (median, 45). Toxicity was graded using the modified Common Toxicity Criteria, and the lung dosimetric parameters from the subgroups with and without pneumonitis were compared. Local control and survival were assessed. RESULTS The median follow-up after IMRT was 9.5 months. Of the 13 patients, 3 (23%) developed Grade 2 or greater acute pulmonary toxicity (during or within 30 days of IMRT). The median dosimetric parameters for those with and without symptomatic pneumonitis were a mean lung dose (MLD) of 7.9 vs. 7.5 Gy (p = 0.40), percentage of lung volume receiving 20 Gy (V(20)) of 0.2% vs. 2.3% (p = 0.51), and percentage of lung volume receiving 5 Gy (V(20)) of 92% vs. 66% (p = 0.36). One patient died of fatal pulmonary toxicity. This patient received a greater MLD (11.4 vs. 7.6 Gy) and had a greater V(20) (6.9% vs. 1.9%), and V(5) (92% vs. 66%) compared with the median of those without fatal pulmonary toxicity. Local and/or distant failure occurred in 6 patients (46%), and 6 patients (46%) were alive without evidence of recurrence at last follow-up. CONCLUSIONS With limited follow-up, 45-Gy IMRT provides reasonable local control for mesothelioma after extrapleural pneumonectomy. However, treatment-related pulmonary toxicity remains a significant concern. Care should be taken to minimize the dose to the remaining lung to achieve an acceptable therapeutic ratio.


International Journal of Radiation Oncology Biology Physics | 2010

INTENSITY-MODULATED RADIATION THERAPY FOR ANAL MALIGNANCIES: A PRELIMINARY TOXICITY AND DISEASE OUTCOMES ANALYSIS

Joseph M. Pepek; Christopher G. Willett; Q. Jackie Wu; S Yoo; Robert W. Clough; Brian G. Czito

PURPOSE Intensity-modulated radiation therapy (IMRT) has the potential to reduce toxicities associated with chemoradiotherapy in the treatment of anal cancer. This study reports the results of using IMRT in the treatment of anal cancer. METHODS AND MATERIALS Records of patients with anal malignancies treated with IMRT at Duke University were reviewed. Acute toxicity was graded using the NCI CTCAEv3.0 scale. Overall survival (OS), metastasis-free survival (MFS), local-regional control (LRC) and colostomy-free survival (CFS) were calculated using the Kaplan-Meier method. RESULTS Forty-seven patients with anal malignancy (89% canal, 11% perianal skin) were treated with IMRT between August 2006 and September 2008. Median follow-up was 14 months (19 months for SCC patients). Median radiation dose was 54 Gy. Eight patients (18%) required treatment breaks lasting a median of 5 days (range, 2-7 days). Toxicity rates were as follows: Grade 4: leukopenia (7%), thrombocytopenia (2%); Grade 3: leukopenia (18%), diarrhea (9%), and anemia (4%); Grade 2: skin (93%), diarrhea (24%), and leukopenia (24%). The 2-year actuarial overall OS, MFS, LRC, and CFS rates were 85%, 78%, 90% and 82%, respectively. For SCC patients, the 2-year OS, MFS, LRC, and CFS rates were 100%, 100%, 95%, and 91%, respectively. CONCLUSIONS IMRT-based chemoradiotherapy for anal cancer results in significant reductions in normal tissue dose and acute toxicities versus historic controls treated without IMRT, leading to reduced rates of toxicity-related treatment interruption. Early disease-related outcomes seem encouraging. IMRT is emerging as a standard therapy for anal cancer.


Medical Physics | 2003

Characteristics of sensitometric curves of radiographic films.

X. R. Zhu; S Yoo; P Jursinic; Daniel F. Grimm; F. Lopez; Jason Rownd; M Gillin

A new type of radiographic film, EDR (extended dose range) film, has been recently become available for film dosimetry. It is particularly attractive for composite isodose verification of intensity modulated radiation therapy because of its low sensitivity relative to the more common Kodak XV film. For XV film, the relationship between optical density and dose, commonly known as the sensitometric curve, depends linearly on the dose at low densities. Unlike XV film, the sensitometric curve of EDR film irradiated by megavoltage x rays is not linearly dependent on the dose at low densities. In this work, to understand the mechanisms governing the shape of the sensitometric curves, EDR film was studied with kilovoltage x rays, 60Co gamma rays, megavoltage x rays, and electron beams. As a comparison, XV film was also studied with the same beams mentioned above. The model originally developed by Silberstein [J. Opt. Soc. Am. 35, 93-107, 1945)] is used to fit experimental data. It is found that the single hit model can be used to predict the sensitometric curve for XV films irradiated by all beams used in this work and for EDR films exposed to kilovoltage x rays. For EDR film irradiated by 60Co gamma rays, megavoltage x rays, and electron beams, the double hit model is used to fit the sensitometric curves. For doses less than 100 cGy, a systematic difference between measured densities and that predicted by the double hit model is observed. Possible causes of the observed differences are discussed. The results of this work provide a theoretical explanation of the sensitometric behavior of EDR film.


Physics in Medicine and Biology | 2009

Tradeoffs of integrating real-time tracking into IGRT for prostate cancer treatment

X Zhu; J Bourland; Yu Yuan; T Zhuang; J O'Daniel; D Thongphiew; Q Wu; S Das; S Yoo; Fang-Fang Yin

This study investigated the integration of the Calypso real-time tracking system, based on implanted ferromagnetic transponders and a detector array, into the current process for image-guided radiation treatment (IGRT) of prostate cancer at our institution. The current IGRT process includes magnetic resonance imaging (MRI) for prostate delineation, CT simulation for treatment planning, daily on-board kV and CBCT imaging for target alignment, and MRI/MRS for post-treatment assessment. This study assesses (1) magnetic-field-induced displacement and radio-frequency (RF)-induced heating of transponders during MRI at 1.5 T and 3 T, and (2) image artifacts caused by transponders and the detector array in phantom and patient cases with the different imaging systems. A tissue-equivalent phantom mimicking prostate tissue stiffness was constructed and implanted with three operational transponders prior to phantom solidification. The measurements show that the Calypso system is safe with all the imaging systems. Transponder position displacements due to the MR field are minimal (<1.0 mm) for both 1.5 T and 3 T MRI scanners, and the temperature variation due to MRI RF heating is <0.2 degrees C. The visibility of transponders and bony anatomy was not affected on the OBI kV and CT images. Image quality degradation caused by the detector antenna array is observed in the CBCT image. Image artifacts are most significant with the gradient echo sequence in the MR images, producing null signals surrounding the transponders with radii approximately 1.5 cm and length approximately 4 cm. Thus, Calypso transponders can preclude the use of MRI/MRS in post-treatment assessment. Modifications of the clinical flow are required to accommodate and minimize the substantial MRI artifacts induced by the Calypso transponders.


Medical Physics | 2007

Evaluation of three types of reference image data for external beam radiotherapy target localization using digital tomosynthesis (DTS)

D Godfrey; L Ren; Hui Yan; Qiuwen Wu; S Yoo; M Oldham; Fang-Fang Yin

Digital tomosynthesis (DTS) is a fast, low-dose three-dimensional (3D) imaging approach which yields slice images with excellent in-plane resolution, though low plane-to-plane resolution. A stack of DTS slices can be reconstructed from a single limited-angle scan, with typical scan angles ranging from 10 degrees to 40 degrees and acquisition times of less than 10 s. The resulting DTS slices show soft tissue contrast approaching that of full cone-beam CT. External beam radiotherapy target localization using DTS requires the registration of on-board DTS images with corresponding reference image data. This study evaluates three types of reference volume: original reference CT, exact reference DTS (RDTS), and a more computationally efficient approximate reference DTS (RDTSapprox), as well as three different DTS scan angles (22 degrees, 44 degrees, and 65 degrees) for the DTS target localization task. Three-dimensional mutual information (MI) shared between reference and onboard DTS volumes was computed in a region surrounding the spine of a chest phantom, as translations spanning +/-5 mm and rotations spanning +/-5 degrees were simulated along each dimension in the reference volumes. The locations of the MI maxima were used as surrogates for registration accuracy, and the width of the MI peaks were used to characterize the registration robustness. The results show that conventional treatment planning CT volumes are inadequate reference volumes for direct registration with on-board DTS data. The efficient RDTSapprox method also appears insufficient for MI-based registration without further refinement of the technique, though it may be suitable for manual registration performed by a human observer. The exact RDTS volumes, on the other hand, delivered a 3D DTS localization accuracy of 0.5 mm and 0.50 along each axis, using only a single 44 degrees coronal on-board DTS scan of the chest phantom.


International Journal of Radiation Oncology Biology Physics | 2012

Effect of Increasing Experience on Dosimetric and Clinical Outcomes in the Management of Malignant Pleural Mesothelioma With Intensity-Modulated Radiation Therapy

Pretesh R. Patel; S Yoo; Gloria Broadwater; Lawrence B. Marks; Edward F. Miles; Thomas A. D’Amico; David H. Harpole; Chris R. Kelsey

PURPOSE To assess the impact of increasing experience with intensity-modulated radiation therapy (IMRT) after extrapleural pneumonectomy (EPP) for malignant pleural mesothelioma (MPM). METHODS AND MATERIALS The records of all patients who received IMRT following EPP at Duke University Medical Center between 2005 and 2010 were reviewed. Target volumes included the preoperative extent of the pleural space, chest wall incisions, involved nodal stations, and a boost to close/positive surgical margins if applicable. Patients were typically treated with 9-11 beams with gantry angles, collimator rotations, and beam apertures manually fixed to avoid the contalateral lung and to optimize target coverage. Toxicity was graded retrospectively using National Cancer Institute common toxicity criteria version 4.0. Target coverage and contralateral lung irradiation were evaluated over time by using linear regression. Local control, disease-free survival, and overall survival rates were estimated using the Kaplan-Meier method. RESULTS Thirty patients received IMRT following EPP; 21 patients also received systemic chemotherapy. Median follow-up was 15 months. The median dose prescribed to the entire ipsilateral hemithorax was 45 Gy (range, 40-50.4 Gy) with a boost of 8-25 Gy in 9 patients. Median survival was 23.2 months. Two-year local control, disease-free survival, and overall survival rates were 47%, 34%, and 50%, respectively. Increasing experience planning MPM cases was associated with improved coverage of planning target volumes (P=.04). Similarly, mean lung dose (P<.01) and lung V5 (volume receiving 5 Gy or more; P<.01) values decreased with increasing experience. Lung toxicity developed after IMRT in 4 (13%) patients at a median of 2.2 months after RT (three grade 3-4 and one grade 5). Lung toxicity developed in 4 of the initial 15 patients vs none of the last 15 patients treated. CONCLUSIONS With increasing experience, target volume coverage improved and dose to the contralateral lung decreased. Rates of pulmonary toxicity were relatively low. However, both local and distant control rates remained suboptimal.

Collaboration


Dive into the S Yoo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lawrence B. Marks

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

S Das

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge