D. Guest
University of California, Irvine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D. Guest.
Physical Review D | 2016
D. Guest; Julian Collado; Pierre Baldi; Shih-Chieh Hsu; Gregor Urban; Daniel Whiteson
Classification of jets as originating from light-flavor or heavy-flavor quarks is an important task for inferring the nature of particles produced in high-energy collisions. The large and variable dimensionality of the data provided by the tracking detectors makes this task difficult. The current state-of-the-art tools require expert data-reduction to convert the data into a fixed low-dimensional form that can be effectively managed by shallow classifiers. We study the application of deep networks to this task, attempting classification at several levels of data, starting from a raw list of tracks. We find that the highest-level lowest-dimensionality expert information sacrifices information needed for classification, that the performance of current state-of-the-art taggers can be matched or slightly exceeded by deep-network-based taggers using only track and vertex information, that classification using only lowest-level highest-dimensionality tracking information remains a difficult task for deep networks, and that adding lower-level track and vertex information to the classifiers provides a significant boost in performance compared to the state-of-the-art.
Journal of Instrumentation | 2016
J. Anderson; K. Bauer; A. Borga; H. Boterenbrood; H. Chen; K. Chen; G. Drake; M. Dönszelmann; D. Francis; D. Guest; B. Gorini; M. Joos; Francesco Lanni; G. Lehmann Miotto; L. J. Levinson; J. Narevicius; W. Panduro Vazquez; A. Roich; S. Ryu; F. Schreuder; J. Schumacher; W. Vandelli; J. C. Vermeulen; Daniel Whiteson; Weihao Wu; J. Zhang
The ATLAS Phase-I upgrade (2019) requires a Trigger and Data Acquisition (TDAQ) system able to trigger and record data from up to three times the nominal LHC instantaneous luminosity. The Front-End LInk eXchange (FELIX) system provides an infrastructure to achieve this in a scalable, detector agnostic and easily upgradeable way. It is a PC-based gateway, interfacing custom radiation tolerant optical links from front-end electronics, via PCIe Gen3 cards, to a commodity switched Ethernet or InfiniBand network. FELIX enables reducing custom electronics in favour of software running on commercial servers. The FELIX system, the design of the PCIe prototype card and the integration test results are presented in this paper.
Bulletin of the American Physical Society | 2008
Michael Goldman; Elizabeth Petrik; D. Guest; D. S. Hall