D. H. Edgell
University of Rochester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D. H. Edgell.
Physics of Plasmas | 2011
M. J. Edwards; J. D. Lindl; B. K. Spears; S. V. Weber; L. J. Atherton; D. L. Bleuel; David K. Bradley; D. A. Callahan; Charles Cerjan; D. S. Clark; G. W. Collins; J. Fair; R. J. Fortner; S. H. Glenzer; S. W. Haan; B. A. Hammel; Alex V. Hamza; S. P. Hatchett; N. Izumi; B. Jacoby; O. S. Jones; J. A. Koch; B. J. Kozioziemski; O. L. Landen; R. A. Lerche; B. J. MacGowan; A. J. Mackinnon; E. R. Mapoles; M. M. Marinak; M. J. Moran
Ignition requires precisely controlled, high convergence implosions to assemble a dense shell of deuterium-tritium (DT) fuel with ρR>∼1 g/cm2 surrounding a 10 keV hot spot with ρR ∼ 0.3 g/cm2. A working definition of ignition has been a yield of ∼1 MJ. At this yield the α-particle energy deposited in the fuel would have been ∼200 kJ, which is already ∼10 × more than the kinetic energy of a typical implosion. The National Ignition Campaign includes low yield implosions with dudded fuel layers to study and optimize the hydrodynamic assembly of the fuel in a diagnostics rich environment. The fuel is a mixture of tritium-hydrogen-deuterium (THD) with a density equivalent to DT. The fraction of D can be adjusted to control the neutron yield. Yields of ∼1014−15 14 MeV (primary) neutrons are adequate to diagnose the hot spot as well as the dense fuel properties via down scattering of the primary neutrons. X-ray imaging diagnostics can function in this low yield environment providing additional information about ...
Physics of Plasmas | 2014
O. A. Hurricane; D. A. Callahan; D. T. Casey; E. L. Dewald; T. R. Dittrich; T. Döppner; M. A. Barrios Garcia; D. E. Hinkel; L. Berzak Hopkins; P. Kervin; J. L. Kline; S. Le Pape; T. Ma; A. G. MacPhee; J. L. Milovich; J. D. Moody; A. Pak; P. K. Patel; H.-S. Park; B. A. Remington; H. F. Robey; J. D. Salmonson; P. T. Springer; R. Tommasini; L. R. Benedetti; J. A. Caggiano; Peter M. Celliers; C. Cerjan; Rebecca Dylla-Spears; D. H. Edgell
The “High-Foot” platform manipulates the laser pulse-shape coming from the National Ignition Facility laser to create an indirect drive 3-shock implosion that is significantly more robust against instability growth involving the ablator and also modestly reduces implosion convergence ratio. This strategy gives up on theoretical high-gain in an inertial confinement fusion implosion in order to obtain better control of the implosion and bring experimental performance in-line with calculated performance, yet keeps the absolute capsule performance relatively high. In this paper, we will cover the various experimental and theoretical motivations for the high-foot drive as well as cover the experimental results that have come out of the high-foot experimental campaign. At the time of this writing, the high-foot implosion has demonstrated record total deuterium-tritium yields (9.3×1015) with low levels of inferred mix, excellent agreement with implosion simulations, fuel energy gains exceeding unity, and evidenc...
Physics of Plasmas | 2014
V.N. Goncharov; T. C. Sangster; R. Betti; T. R. Boehly; M.J. Bonino; T.J.B. Collins; R. S. Craxton; J. A. Delettrez; D. H. Edgell; R. Epstein; R.K. Follett; C.J. Forrest; D. H. Froula; V. Yu. Glebov; D. R. Harding; R.J. Henchen; S. X. Hu; I.V. Igumenshchev; R. Janezic; J. H. Kelly; Thomas Kessler; T. Z. Kosc; S. J. Loucks; J.A. Marozas; F. J. Marshall; A. V. Maximov; R.L. McCrory; P.W. McKenty; D. D. Meyerhofer; D.T. Michel
Reaching ignition in direct-drive (DD) inertial confinement fusion implosions requires achieving central pressures in excess of 100 Gbar. The OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] is used to study the physics of implosions that are hydrodynamically equivalent to the ignition designs on the National Ignition Facility (NIF) [J. A. Paisner et al., Laser Focus World 30, 75 (1994)]. It is shown that the highest hot-spot pressures (up to 40 Gbar) are achieved in target designs with a fuel adiabat of α ≃ 4, an implosion velocity of 3.8 × 107 cm/s, and a laser intensity of ∼1015 W/cm2. These moderate-adiabat implosions are well understood using two-dimensional hydrocode simulations. The performance of lower-adiabat implosions is significantly degraded relative to code predictions, a common feature between DD implosions on OMEGA and indirect-drive cryogenic implosions on the NIF. Simplified theoretical models are developed to gain physical understanding of the implosion dynamics th...
Physics of Plasmas | 2012
Igor V. Igumenshchev; W. Seka; D. H. Edgell; D.T. Michel; D. H. Froula; V.N. Goncharov; R. S. Craxton; L. Divol; R. Epstein; R. K. Follett; J. H. Kelly; T. Z. Kosc; A. V. Maximov; R.L. McCrory; D. D. Meyerhofer; P. Michel; J.F. Myatt; T. C. Sangster; A. Shvydky; S. Skupsky; C. Stoeckl
Direct-drive-implosion experiments on the OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] have showed discrepancies between simulations of the scattered (non-absorbed) light levels and measured ones that indicate the presence of a mechanism that reduces laser coupling efficiency by 10%-20%. This appears to be due to crossed-beam energy transfer (CBET) that involves electromagnetic-seeded, low-gain stimulated Brillouin scattering. CBET scatters energy from the central portion of the incoming light beam to outgoing light, reducing the laser absorption and hydrodynamic efficiency of implosions. One-dimensional hydrodynamic simulations including CBET show good agreement with all observables in implosion experiments on OMEGA. Three strategies to mitigate CBET and improve laser coupling are considered: the use of narrow beams, multicolor lasers, and higher-Z ablators. Experiments on OMEGA using narrow beams have demonstrated improvements in implosion performance.
Physics of Plasmas | 2012
D. A. Callahan; N. B. Meezan; S. H. Glenzer; A. J. Mackinnon; L. R. Benedetti; D. K. Bradley; J. Celeste; Peter M. Celliers; S. N. Dixit; T. Döppner; E. G. Dzentitis; S. Glenn; S. W. Haan; C. A. Haynam; Damien G. Hicks; D. E. Hinkel; O. S. Jones; O. L. Landen; Richard A. London; A. G. MacPhee; P. Michel; J. D. Moody; J. E. Ralph; H. F. Robey; M. D. Rosen; M. B. Schneider; D. J. Strozzi; L. J. Suter; R. P. J. Town; K. Widmann
Achieving inertial confinement fusion ignition requires a symmetric, high velocity implosion. Experiments show that we can reach 95 ± 5% of the required velocity by using a 420 TW, 1.6 MJ laser pulse. In addition, experiments with a depleted uranium hohlraum show an increase in capsule performance which suggests an additional 18 ± 5 μm/ns of velocity with uranium hohlraums over gold hohlraums. Combining these two would give 99 ± 5% of the ignition velocity. Experiments show that we have the ability to tune symmetry using crossbeam transfer. We can control the second Legendre mode (P2) by changing the wavelength separation between the inner and outer cones of laser beams. We can control the azimuthal m = 4 asymmetry by changing the wavelength separation between the 23.5 and 30 degree beams on NIF. This paper describes our “first pass” tuning the implosion velocity and shape on the National Ignition Facility laser [Moses et al., Phys. Plasmas, 16, 041006 (2009)].
Physics of Plasmas | 2010
Igor V. Igumenshchev; D. H. Edgell; V.N. Goncharov; J. A. Delettrez; A. V. Maximov; J. F. Myatt; W. Seka; A. Shvydky; S. Skupsky; C. Stoeckl
Radiative hydrodynamic simulations of implosion experiments on the OMEGA laser system [Boehly et al., Opt. Commun. 133, 495 (1997)] show that energy transfer between crossing laser beams can reduce laser absorption by 10%–20%. A new quantitative model for the crossed-beam energy transfer has been developed, allowing one to simulate the coupling of multiple beams in the expanding corona of implosion targets. Scattered-light and bang-time measurements show good agreement with predictions of this model when nonlocal heat transport is employed. The laser absorption can be increased by narrowing laser beams and/or employing two-color light, which both reduce the crossed-beam energy transfer.
Physics of Plasmas | 2009
W. Seka; D. H. Edgell; J. F. Myatt; A. V. Maximov; R. W. Short; V.N. Goncharov; H. A. Baldis
The two-plasmon-decay (TPD) instability in direct-drive irradiation OMEGA [J. M. Soures, R. L. McCrory, C. P. Verdon, et al., Phys. Plasmas 3, 2108 (1996)] experiments is seen in the half-integer harmonic emission. Experimental time-resolved ω/2 and 3ω/2 spectra indicate that the linear theory for the absolute TPD instability reasonably predicts TPD thresholds. The plasma wave spectra do not, however, agree at all with the predictions of the linear theory. This is most likely a consequence of the nonlinear evolution of this instability once it is above threshold. This is demonstrated with spectral data obtained from spherical implosion experiments as well as planar target experiments. In the latter, Thomson scattering shows the importance of the Landau cutoff. For the TPD instability, the Landau cutoff is found to be respected in all spherical and planar target experiments. In addition, the maximum plasma wave amplitudes appear to occur near the Landau cutoff.
Physics of Plasmas | 2008
W. Seka; D. H. Edgell; J. P. Knauer; J. F. Myatt; A. V. Maximov; R. W. Short; T. C. Sangster; C. Stoeckl; R. E. Bahr; R. S. Craxton; J. A. Delettrez; V.N. Goncharov; Igor V. Igumenshchev; D. Shvarts
Time-dependent and time-integrated absorption fractions are inferred from scattered-light measurements in room-temperature and cryogenic direct-drive-implosion experiments on OMEGA. The measurements agree reasonably well with hydrodynamic simulations that include nonlocal electron-heat transport. Discrepancies in the time-resolved scattered-light spectra between simulations and experiments remain for complex laser pulse shapes, indicating beam-to-beam energy transfer and commensurate coupling losses. Time-resolved scattered-light spectra near ω∕2 and 3ω∕2 as well as time-resolved hard-x-ray measurements indicate the presence of a strongly driven two-plasmon-decay (TPD) instability at high intensities that may influence the observed laser light absorption. Experiments indicate that energetic electron production due to the TPD instability can be mitigated with high-Z-doped plastic shells.
Physics of Plasmas | 2013
T. C. Sangster; V.N. Goncharov; R. Betti; P. B. Radha; T. R. Boehly; D. T. Casey; T.J.B. Collins; R. S. Craxton; J. A. Delettrez; D. H. Edgell; R. Epstein; C.J. Forrest; J. A. Frenje; D. H. Froula; M. Gatu-Johnson; Y. Yu. Glebov; D. R. Harding; M. Hohenberger; S. X. Hu; I.V. Igumenshchev; R. Janezic; J. H. Kelly; Thomas Kessler; C. Kingsley; T. Z. Kosc; J. P. Knauer; S. J. Loucks; J.A. Marozas; F. J. Marshall; A. V. Maximov
A flexible direct-drive target platform is used to implode cryogenic deuterium–tritium (DT) capsules on the OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)]. The goal of these experiments is to demonstrate ignition hydrodynamically equivalent performance where the laser drive intensity, the implosion velocity, the fuel adiabat, and the in-flight aspect ratio (IFAR) are the same as those for a 1.5-MJ target [Goncharov et al., Phys. Rev. Lett. 104, 165001 (2010)] designed to ignite on the National Ignition Facility [Hogan et al., Nucl. Fusion 41, 567 (2001)]. The results from a series of 29 cryogenic DT implosions are presented. The implosions were designed to span a broad region of design space to study target performance as a function of shell stability (adiabat) and implosion velocity. Ablation-front perturbation growth appears to limit target performance at high implosion velocities. Target outer-surface defects associated with contaminant gases in the DT fuel are identified as the dominant per...
Physics of Plasmas | 2007
T. C. Sangster; R. Betti; R. S. Craxton; J. A. Delettrez; D. H. Edgell; L. M. Elasky; V. Yu. Glebov; V.N. Goncharov; D. R. Harding; D. Jacobs-Perkins; R. Janezic; R. L. Keck; J. P. Knauer; S. J. Loucks; L. D. Lund; F. J. Marshall; R.L. McCrory; P.W. McKenty; D. D. Meyerhofer; P. B. Radha; S. P. Regan; W. Seka; W.T. Shmayda; S. Skupsky; V. A. Smalyuk; J. M. Soures; C. Stoeckl; B. Yaakobi; J. A. Frenje; C. K. Li
Ignition target designs for inertial confinement fusion on the National Ignition Facility (NIF) [W. J. Hogan et al., Nucl. Fusion 41, 567 (2001)] are based on a spherical ablator containing a solid, cryogenic-fuel layer of deuterium and tritium. The need for solid-fuel layers was recognized more than 30 years ago and considerable effort has resulted in the production of cryogenic targets that meet most of the critical fabrication tolerances for ignition on the NIF. At the University of Rochester’s Laboratory for Laser Energetics (LLE), the inner-ice surface of cryogenic DT capsules formed using β-layering meets the surface-smoothness requirement for ignition (<1-μm rms in all modes). Prototype x-ray-drive cryogenic targets being produced at the Lawrence Livermore National Laboratory are nearing the tolerances required for ignition on the NIF. At LLE, these cryogenic DT (and D2) capsules are being imploded on the direct-drive 60-beam, 30-kJ UV OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]...