Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. A. Delettrez is active.

Publication


Featured researches published by J. A. Delettrez.


Physics of Plasmas | 1996

Direct‐drive laser‐fusion experiments with the OMEGA, 60‐beam, >40 kJ, ultraviolet laser system

J. M. Soures; R. L. McCrory; C. P. Verdon; A. Babushkin; R. E. Bahr; T. R. Boehly; R. Boni; D. K. Bradley; D. L. Brown; R. S. Craxton; J. A. Delettrez; William R. Donaldson; R. Epstein; P. A. Jaanimagi; S.D Jacobs; K. Kearney; R. L. Keck; J. H. Kelly; Terrance J. Kessler; Robert L. Kremens; J. P. Knauer; S. A. Kumpan; S. A. Letzring; D.J Lonobile; S. J. Loucks; L. D. Lund; F. J. Marshall; P.W. McKenty; D. D. Meyerhofer; S.F.B. Morse

OMEGA, a 60‐beam, 351 nm, Nd:glass laser with an on‐target energy capability of more than 40 kJ, is a flexible facility that can be used for both direct‐ and indirect‐drive targets and is designed to ultimately achieve irradiation uniformity of 1% on direct‐drive capsules with shaped laser pulses (dynamic range ≳400:1). The OMEGA program for the next five years includes plasma physics experiments to investigate laser–matter interaction physics at temperatures, densities, and scale lengths approaching those of direct‐drive capsules designed for the 1.8 MJ National Ignition Facility (NIF); experiments to characterize and mitigate the deleterious effects of hydrodynamic instabilities; and implosion experiments with capsules that are hydrodynamically equivalent to high‐gain, direct‐drive capsules. Details are presented of the OMEGA direct‐drive experimental program and initial data from direct‐drive implosion experiments that have achieved the highest thermonuclear yield (1014 DT neutrons) and yield efficienc...


Science | 2008

Proton Radiography of Inertial Fusion Implosions

J. R. Rygg; F. H. Seguin; C. K. Li; J. A. Frenje; M. J.-E. Manuel; R. D. Petrasso; R. Betti; J. A. Delettrez; O. V. Gotchev; J. P. Knauer; D. D. Meyerhofer; F. J. Marshall; C. Stoeckl; W. Theobald

A distinctive way of quantitatively imaging inertial fusion implosions has resulted in the characterization of two different types of electromagnetic configurations and in the measurement of the temporal evolution of capsule size and areal density. Radiography with a pulsed, monoenergetic, isotropic proton source reveals field structures through deflection of proton trajectories, and areal densities are quantified through the energy lost by protons while traversing the plasma. The two field structures consist of (i) many radial filaments with complex striations and bifurcations, permeating the entire field of view, of magnetic field magnitude 60 tesla and (ii) a coherent, centrally directed electric field of order 109 volts per meter, seen in proximity to the capsule surface. Although the mechanism for generating these fields is unclear, their effect on implosion dynamics is potentially consequential.


Physics of Plasmas | 2004

Polar direct drive on the National Ignition Facility

S. Skupsky; J.A. Marozas; R. S. Craxton; R. Betti; T.J.B. Collins; J. A. Delettrez; V.N. Goncharov; P. W. McKenty; P. B. Radha; T. R. Boehly; J. P. Knauer; F. J. Marshall; D. R. Harding; J. D. Kilkenny; D. D. Meyerhofer; T. C. Sangster; R. L. McCrory

Three recent developments in direct-drive target design have enhanced the possibility of achieving high target gain on the National Ignition Facility (NIF): (1) Laser absorption was increased by almost 50% using wetted-foam targets. (2) Adiabat shaping significantly increased the hydrodynamic stability of the target during the acceleration phase of the implosion without sacrificing target gain. (3) Techniques to reduce laser imprint using pulse shaping and radiation preheat were developed. These design features can be employed for direct-drive-ignition experiments while the NIF is in the x-ray-drive configuration. This involves repointing some of the beams toward the equator of the target to improve uniformity of target drive. This approach, known as polar direct drive (PDD), will enhance the capability of the NIF to explore ignition conditions. PDD will couple more energy to the fuel than x-ray drive. The compressed fuel core can be more easily accessed for high-ρR diagnostic development and for fast-ign...


Physics of Plasmas | 2015

Direct-drive inertial confinement fusion: A review

R. S. Craxton; Karen S. Anderson; T. R. Boehly; V.N. Goncharov; D. R. Harding; J. P. Knauer; R. L. McCrory; P.W. McKenty; D. D. Meyerhofer; J. F. Myatt; Andrew J. Schmitt; J. D. Sethian; R. W. Short; S. Skupsky; W. Theobald; W. L. Kruer; Kokichi Tanaka; R. Betti; T.J.B. Collins; J. A. Delettrez; S. X. Hu; J.A. Marozas; A. V. Maximov; D.T. Michel; P. B. Radha; S. P. Regan; T. C. Sangster; W. Seka; A. A. Solodov; J. M. Soures

The direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser–plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. The problem of suprathermal electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 μm—the third harmonic of the Nd:glass laser—and 0.248 μm (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon–decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser concern for mainline direct-drive target concepts. Filamentation is largely suppressed by beam smoothing. Thermal transport modeling, important to the interpretation of experiments and to target design, has been found to be nonlocal in nature. Advances in shock timing and equation-of-state measurements relevant to direct-drive ICF are reported. Room-temperature implosions have provided an increased understanding of the importance of stability and uniformity. The evolution of cryogenic implosion capabilities, leading to an extensive series carried out on the 60-beam OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)], is reviewed together with major advances in cryogenic target formation. A polar-drive concept has been developed that will enable direct-drive–ignition experiments to be performed on the National Ignition Facility [Haynam et al., Appl. Opt. 46(16), 3276 (2007)]. The advantages offered by the alternative approaches of fast ignition and shock ignition and the issues associated with these concepts are described. The lessons learned from target-physics and implosion experiments are taken into account in ignition and high-gain target designs for laser wavelengths of 1/3 μm and 1/4 μm. Substantial advances in direct-drive inertial fusion reactor concepts are reviewed. Overall, the progress in scientific understanding over the past five decades has been enormous, to the point that inertial fusion energy using direct drive shows significant promise as a future environmentally attractive energy source.


Physics of Plasmas | 2005

Two-dimensional simulations of plastic-shell, direct-drive implosions on OMEGA

P. B. Radha; V.N. Goncharov; T.J.B. Collins; J. A. Delettrez; Y. Elbaz; V. Yu. Glebov; R. L. Keck; D. E. Keller; J. P. Knauer; J.A. Marozas; F. J. Marshall; P. W. McKenty; D. D. Meyerhofer; S. P. Regan; T. C. Sangster; D. Shvarts; S. Skupsky; Y. Srebro; R. P. J. Town; C. Stoeckl

Multidimensional hydrodynamic properties of high-adiabat direct-drive plastic-shell implosions on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] are investigated using the multidimensional hydrodynamic code, DRACO [D. Keller et al., Bull. Am. Phys. Soc. 44, 37 (1999)]. Multimode simulations including the effects of nonuniform illumination and target roughness indicate that shell stability during the acceleration phase plays a critical role in determining target performance. For thick shells that remain integral during the acceleration phase, target yields are significantly reduced by the combination of the long-wavelength (l<10) modes due to surface roughness and beam imbalance and the intermediate modes (20⩽l⩽50) due to single-beam nonuniformities. The neutron-production rate for these thick shells truncates relative to one-dimensional (1D) predictions. The yield degradation in the thin shells is mainly due to shell breakup at short wavelengths (λ∼Δ, where Δ is the in-flight s...


Physics of Plasmas | 2005

Multidimensional analysis of direct-drive, plastic-shell implosions on OMEGA

P. B. Radha; T.J.B. Collins; J. A. Delettrez; Y. Elbaz; R. Epstein; V. Yu. Glebov; V.N. Goncharov; R. L. Keck; J. P. Knauer; J.A. Marozas; F. J. Marshall; R. L. McCrory; P.W. McKenty; D. D. Meyerhofer; S. P. Regan; T. C. Sangster; W. Seka; D. Shvarts; S. Skupsky; Y. Srebro; C. Stoeckl

Direct-drive, plastic shells imploded on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] with a 1ns square pulse are simulated using the multidimensional hydrodynamic code DRACO in yield degradation in “thin” shells is primarily caused by shell breakup during the acceleration phase due to short-wavelength (l>50, where l is the Legendre mode number) perturbation growth, whereas “thick” shell performance is influenced primarily by long and intermediate modes (l⩽50). Simulation yields, temporal history of neutron production, areal densities, and x-ray images of the core compare well with experimental observations. In particular, the thin-shell neutron production history falls off less steeply than one-dimensional predictions due to shell-breakup-induced undercompression and delayed stagnation. Thicker, more-stable shells show burn truncation due to instability-induced mass flow into the colder bubbles. Estimates of small-scale mix indicate that turbulent mixing does not influence p...


Physics of Plasmas | 2014

Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium–tritium implosions on OMEGAa)

V.N. Goncharov; T. C. Sangster; R. Betti; T. R. Boehly; M.J. Bonino; T.J.B. Collins; R. S. Craxton; J. A. Delettrez; D. H. Edgell; R. Epstein; R.K. Follett; C.J. Forrest; D. H. Froula; V. Yu. Glebov; D. R. Harding; R.J. Henchen; S. X. Hu; I.V. Igumenshchev; R. Janezic; J. H. Kelly; Thomas Kessler; T. Z. Kosc; S. J. Loucks; J.A. Marozas; F. J. Marshall; A. V. Maximov; R.L. McCrory; P.W. McKenty; D. D. Meyerhofer; D.T. Michel

Reaching ignition in direct-drive (DD) inertial confinement fusion implosions requires achieving central pressures in excess of 100 Gbar. The OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] is used to study the physics of implosions that are hydrodynamically equivalent to the ignition designs on the National Ignition Facility (NIF) [J. A. Paisner et al., Laser Focus World 30, 75 (1994)]. It is shown that the highest hot-spot pressures (up to 40 Gbar) are achieved in target designs with a fuel adiabat of α ≃ 4, an implosion velocity of 3.8 × 107 cm/s, and a laser intensity of ∼1015 W/cm2. These moderate-adiabat implosions are well understood using two-dimensional hydrocode simulations. The performance of lower-adiabat implosions is significantly degraded relative to code predictions, a common feature between DD implosions on OMEGA and indirect-drive cryogenic implosions on the NIF. Simplified theoretical models are developed to gain physical understanding of the implosion dynamics th...


Physics of Plasmas | 2007

High-Intensity Laser Interactions with Mass-Limited Solid Targets and Implications for Fast-Ignition Experiments on OMEGA EP

J. F. Myatt; W. Theobald; J. A. Delettrez; C. Stoeckl; M. Storm; T. C. Sangster; A. V. Maximov; R. W. Short

The modeling of petawatt laser-generated hot electrons in mass-limited solid-foil-target interactions at “relativistic” laser intensities is presented using copper targets and parameters motivated by recent experiments at the Rutherford Appleton Laboratory Petawatt and 100-TW facilities [Theobald et al., Phys. Plasmas 13, 043102 (2006)]. Electron refluxing allows a unique determination of the laser-electron conversion efficiency and a test with simulations. Good agreement between experiments and simulations is found for conversion efficiencies of 10%.


Physics of Plasmas | 2006

Hot Surface Ionic Line Emission and Cold K-Inner Shell Emission from Petawatt-Laser-Irradiated Cu Foil Targets

W. Theobald; K. U. Akli; R. J. Clarke; J. A. Delettrez; R. R. Freeman; S. H. Glenzer; J. S. Green; G. Gregori; R. Heathcote; N. Izumi; J. King; J. A. Koch; Jaroslav Kuba; K. L. Lancaster; A. J. Mackinnon; M.H. Key; C. Mileham; J. F. Myatt; D. Neely; P.A. Norreys; H.-S. Park; J. Pasley; P. K. Patel; S. P. Regan; H. Sawada; R. Shepherd; Richard Adolph Snavely; R. Stephens; C. Stoeckl; M. Storm

A hot, T{sub e} {approx} 2- to 3-keV surface plasma was observed in the interaction of a 0.7-ps petawatt laser beam with solid copper-foil targets at intensities >10{sup 20} W/cm{sup 2}. Copper K-shell spectra were measured in the range of 8 to 9 keV using a single-photon-counting x-ray CCD camera. In addition to K{sub {alpha}} and K{sub {beta}} inner-shell lines, the emission contained the Cu He{sub {alpha}} and Ly{sub {alpha}} lines, allowing the temperature to be inferred. These lines have not been observed previously with ultrafast laser pulses. For intensities less than 3 x 10{sup 18} W/cm{sup 2}, only the K{sub {alpha}} and K{sub {beta}} inner-shell emissions are detected. Measurements of the absolute K{sub {alpha}} yield as a function of the laser intensity are in agreement with a model that includes refluxing and confinement of the suprathermal electrons in the target volume.


Physics of Plasmas | 2001

Core performance and mix in direct-drive spherical implosions with high uniformity

D. D. Meyerhofer; J. A. Delettrez; R. Epstein; V. Yu. Glebov; V.N. Goncharov; R. L. Keck; R. L. McCrory; P.W. McKenty; F. J. Marshall; P. B. Radha; S. P. Regan; S. Roberts; W. Seka; S. Skupsky; V. A. Smalyuk; C. Sorce; C. Stoeckl; J. M. Soures; R. P. J. Town; B. Yaakobi; Jonathan D. Zuegel; J. A. Frenje; C. K. Li; R. D. Petrasso; F. H. Séguin; Kurtis A. Fletcher; Stephen Padalino; C. Freeman; N. Izumi; R. A. Lerche

The performance of gas-filled, plastic-shell implosions has significantly improved with advances in on-target uniformity on the 60-beam OMEGA laser system [T. R. Boehly, D. L. Brown, R. S. Craxton et al., Opt. Commun. 133, 495 (1997)]. Polarization smoothing (PS) with birefringent wedges and 1-THz-bandwidth smoothing by spectral dispersion (SSD) have been installed on OMEGA. The beam-to-beam power imbalance is ⩽5% rms. Implosions of 20-μm-thick CH shells (15 atm fill) using full beam smoothing (1-THz SSD and PS) have primary neutron yields and fuel areal densities that are ∼70% larger than those driven with 0.35-THz SSD without PS. They also produce ∼35% of the predicted one-dimensional neutron yield. The results described here suggest that individual-beam nonuniformity is no longer the primary cause of nonideal target performance. A highly constrained model of the core conditions and fuel–shell mix has been developed. It suggests that there is a “clean” fuel region, surrounded by a mixed region, that acc...

Collaboration


Dive into the J. A. Delettrez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Stoeckl

University of Rochester

View shared research outputs
Top Co-Authors

Avatar

S. P. Regan

University of Rochester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. B. Radha

University of Rochester

View shared research outputs
Top Co-Authors

Avatar

W. Seka

University of Rochester

View shared research outputs
Top Co-Authors

Avatar

R. D. Petrasso

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge