Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. Haas is active.

Publication


Featured researches published by D. Haas.


Proceedings of SPIE | 2016

The Astro-H High Resolution Soft X-Ray Spectrometer

Richard L. Kelley; Hiroki Akamatsu; Phillipp Azzarell; Tom Bialas; Gregory V. Brown; Edgar Canavan; Meng P. Chiao; E. Costantini; Michael DiPirro; Megan E. Eckart; Yuichiro Ezoe; Ryuichi Fujimoto; D. Haas; Jan Willem den Herder; Akio Hoshino; Kumi Ishikawa; Yoshitaka Ishisaki; Naoko Iyomoto; Caroline A. Kilbourne; Mark O. Kimball; Shunji Kitamoto; Saori Konami; Shu Koyama; Maurice A. Leutenegger; Dan McCammon; Joseph Miko; Kazuhisa Mitsuda; Ikuyuki Mitsuishi; Harvey Moseley; Hiroshi Murakami

We present the overall design and performance of the Astro-H (Hitomi) Soft X-Ray Spectrometer (SXS). The instrument uses a 36-pixel array of x-ray microcalorimeters at the focus of a grazing-incidence x-ray mirror Soft X-Ray Telescope (SXT) for high-resolution spectroscopy of celestial x-ray sources. The instrument was designed to achieve an energy resolution better than 7 eV over the 0.3-12 keV energy range and operate for more than 3 years in orbit. The actual energy resolution of the instrument is 4-5 eV as demonstrated during extensive ground testing prior to launch and in orbit. The measured mass flow rate of the liquid helium cryogen and initial fill level at launch predict a lifetime of more than 4 years assuming steady mechanical cooler performance. Cryogen-free operation was successfully demonstrated prior to launch. The successful operation of the SXS in orbit, including the first observations of the velocity structure of the Perseus cluster of galaxies, demonstrates the viability and power of this technology as a tool for astrophysics.


Proceedings of SPIE | 2014

Soft x-ray spectrometer (SXS): The high-resolution cryogenic spectrometer onboard ASTRO-H

Kazuhisa Mitsuda; Richard L. Kelley; Hiroki Akamatsu; Thomas G. Bialas; Gregory V. Brown; Edgar Canavan; Meng Chiao; E. Costantini; Jan Willem den Herder; Cor P. de Vries; Michael DiPirro; Megan E. Eckart; Yuichiro Ezoe; Ryuichi Fujimoto; D. Haas; Akio Hoshino; Kumi Ishikawa; Yoshitaka Ishisaki; Naoko Iyomoto; Caroline A. Kilbourne; Mark O. Kimball; Shunji Kitamoto; Saori Konami; M. A. Leutenegger; Dan McCammon; Joseph Miko; Ikuyuki Mitsuishi; Hiroshi Murakami; Masahide Murakami; Hirofumi Noda

We present the development status of the Soft X-ray Spectrometer (SXS) onboard the ASTRO-H mission. The SXS provides the capability of high energy-resolution X-ray spectroscopy of a FWHM energy resolution of < 7eV in the energy range of 0.3 – 10 keV. It utilizes an X-ray micorcalorimeter array operated at 50 mK. The SXS microcalorimeter subsystem is being developed in an EM-FM approach. The EM SXS cryostat was developed and fully tested and, although the design was generally confirmed, several anomalies and problems were found. Among them is the interference of the detector with the micro-vibrations from the mechanical coolers, which is the most difficult one to solve. We have pursued three different countermeasures and two of them seem to be effective. So far we have obtained energy resolutions satisfying the requirement with the FM cryostat.


Proceedings of SPIE | 2016

In-orbit operation of the ASTRO-H SXS

Masahiro Tsujimoto; Kazuhisa Mitsuda; Richard L. Kelley; Jan Willem den Herder; Hiroki Akamatsu; Thomas G. Bialas; Gregory V. Brown; Meng P. Chiao; E. Costantini; Cor P. de Vries; Michael DiPirro; Megan E. Eckart; Yuichiro Ezoe; Ryuichi Fujimoto; D. Haas; Akio Hoshino; Kumi Ishikawa; Yoshitaka Ishisaki; Naoko Iyomoto; Caroline A. Kilbourne; Shunji Kitamoto; Shu Koyama; Maurice A. Leutenegger; Dan McCammon; Ikuyuki Mitsuishi; Hiroshi Murakami; Masahide Murakami; Hirofumi Noda; Mina Ogawa; Naomi Ota

We summarize all the in-orbit operations of the Soft X-ray Spectrometer (SXS) onboard the ASTRO-H (Hit- omi) satellite. The satellite was launched on 2016/02/17 and the communication with the satellite ceased on 2016/03/26. The SXS was still in the commissioning phase, in which the setups were progressively changed. This article is intended to serve as a reference of the events in the orbit to properly interpret the SXS data taken during its short life time, and as a test case for planning the in-orbit operation for future micro-calorimeter missions.


Proceedings of SPIE | 2010

Filters and calibration sources for the Soft X-ray Spectrometer (SXS) instrument on ASTRO-H

C. P. de Vries; J. W. den Herder; E. Costantini; Henry J. M. Aarts; P. Lowes; J. S. Kaastra; R. L. Kelley; Keith C. Gendreau; Zaven Arzoumanian; Richard Koenecke; D. Haas; S. Paltani; K. Mitsuda; Noriko Y. Yamasaki

The SXS instrument is the Soft X-ray micro-calorimeter Spectrometer planned for the Japanese ASTRO-H satellite, scheduled to be launched in 2014. In this paper, the trade off and modelling for the X-ray absorption and optical blocking filters will be described. The X-ray absorption filter will optimize the efficiency for high spectral resolution observations for bright sources at higher energies (notably around the Fe-K line at 6.4 KeV), given the characteristics of the instrument while the optical blocking filter allows X-ray observations of optically bright sources. For this mission a novel type of on-off-switchable X-ray calibration source, using light sensitive photo-cathodes, is being developed, which will be used for gain calibration and contamination monitoring. These sources will be used by both the SXS and SXI (Soft X-ray Imager) instruments and have the capability to be pulsed at millisecond intervals. Details of these sources will also be discussed.


Proceedings of SPIE | 2012

Calibration sources for the soft x-ray spectrometer instrument on ASTRO-H

C. P. de Vries; P. Lowes; J. W. den Herder; Henry J. M. Aarts; D. Haas; K. Mitsuda; Noriko Y. Yamasaki; R. L. Kelley; Caroline A. Kilbourne; Keith C. Gendreau

The SXS instrument is the Soft X-ray micro-calorimeter Spectrometer planned for the Japanese ASTRO-H satellite, scheduled to be launched in 2014. In this paper we describe the X-ray calibration sources used in this instrument. These sources use light sensitive photo-cathodes to generate electrons, which in turn generate the X-rays. This design has the unique property to allow for fast discrete pulsations of the generated X-rays. This enables the energy scale calibration of the instrument simultaneously with astronomical observations, without adding to the background in the astronomical data. Flight-model sources have been made, and a number of them have been operating in the past several months to monitor their behaviour. Here we report on the characterisation and performance of these sources. In addition, we will elaborate on the nature and expected accuracy of the energy calibration, in relation to the expected stability of the instrument, given the calibration source strength and its mode of operation.


Proceedings of SPIE | 2016

Ground Calibration of the Astro-H (Hitomi) Soft X-Ray Spectrometer

Megan E. Eckart; Joseph S. Adams; G. V. Brown; Meng P. Chiao; Ryuichi Fujimoto; D. Haas; J. W. den Herder; Yoshitaka Ishisaki; R. L. Kelley; Caroline A. Kilbourne; Maurice A. Leutenegger; D. McCammon; K. Mitsuda; F. S. Porter; Kosuke Sato; Makoto Sawada; Hiromi Seta; Gary A. Sneiderman; Andrew E. Szymkowiak; Yoh Takei; Makoto Tashiro; Masahiro Tsujimoto; C. P. de Vries; Tomomi Watanabe; S. Yamada; Noriko Y. Yamasaki

The Astro-H (Hitomi) Soft X-ray Spectrometer (SXS) was a pioneering imaging x-ray spectrometer with 5 eV energy resolution at 6 keV. The instrument used a microcalorimeter array at the focus of a high-throughput soft x-ray telescope to enable high-resolution non-dispersive spectroscopy in the soft x-ray waveband (0:3-12 keV). We present the suite of ground calibration measurements acquired from 2012-2015, including characterization of the detector system, anti-coincidence detector, optical blocking filters, and filter-wheel filters. The calibration of the 36-pixel silicon thermistor microcalorimeter array includes parameterizations of the energy gain scale and line spread function for each event grade over a range of instrument operating conditions, as well as quantum efficiency measurements. The x-ray transmission of the set of five Al/polyimide thin-film optical blocking filters mounted inside the SXS dewar has been modeled based on measurements at synchrotron beamlines, including with high spectral resolution at the C, N, O, and Al K-edges. In addition, we present the x-ray transmission of the dewar gate valve and of the filters mounted on the SXS filter wheel (external to the dewar), including beryllium, polyimide, and neutral density filters.


Proceedings of SPIE | 2016

In-flight verification of the calibration and performance of the ASTRO-H (Hitomi) Soft X-Ray Spectrometer

Maurice A. Leutenegger; Marc Audard; Gregory V. Brown; Meng P. Chiao; Megan E. Eckart; Ryuichi Fujimoto; Akihiro Furuzawa; Matteo Guainazzi; D. Haas; Jan-Willem den Herder; Takayuki Hayashi; Ryo Iizuka; Manabu Ishida; Yoshitaka Ishisaki; Richard L. Kelley; Naomichi Kikuchi; Caroline A. Kilbourne; Shu Koyama; Sho Kurashima; Yoshitomo Maeda; Maxim Markevitch; Dan McCammon; Kazuhisa Mitsuda; Hideyuki Mori; Nozomi Nakaniwa; Takashi Okajima; Stephane Paltani; Robert Petre; F. Scott Porter; Kosuke Sato

The Soft X-ray Spectrometer (SXS) onboard the Astro-H (Hitomi) orbiting x-ray observatory featured an array of 36 silicon thermistor x-ray calorimeters optimized to perform high spectral resolution x-ray imaging spectroscopy of astrophysical sources in the 0.3-12 keV band. Extensive pre- flight calibration measurements are the basis for our modeling of the pulse-height-energy relation and energy resolution for each pixel and event grade, telescope collecting area, detector efficiency, and pulse arrival time. Because of the early termination of mission operations, we needed to extract the maximum information from observations performed only days into the mission when the onboard calibration sources had not yet been commissioned and the dewar was still coming into thermal equilibrium, so our technique for reconstructing the per-pixel time-dependent pulse-height-energy relation had to be modified. The gain scale was reconstructed using a combination of an absolute energy scale calibration at a single time using a fiducial from an onboard radioactive source, and calibration of a dominant time-dependent gain drift component using a dedicated calibration pixel, as well as a residual time-dependent variation using spectra from the Perseus cluster of galaxies. The energy resolution was also measured using the onboard radioactive sources. It is consistent with instrument-level measurements accounting for the modest increase in noise due to spacecraft systems interference. We use observations of two pulsars to validate our models of the telescope area and detector efficiency, and to derive a more accurate value for the thickness of the gate valve Be window, which had not been opened by the time mission operations ceased. We use observations of the Crab pulsar to refine the pixel-to-pixel timing and validate the absolute timing.


Proceedings of SPIE | 2016

Optimising the multiplex factor of the frequency domain multiplexed readout of the TES-based microcalorimeter imaging array for the X-IFU instrument on the Athena x-ray observatory

J. van der Kuur; L. Gottardi; Hiroki Akamatsu; B. J. van Leeuwen; R. den Hartog; D. Haas; Mikko Kiviranta; B. J. Jackson

Athena is a space-based X-ray observatory intended for exploration of the hot and energetic universe. One of the science instruments on Athena will be the X-ray Integrated Field Unit (X-IFU), which is a cryogenic X-ray spectrometer, based on a large cryogenic imaging array of Transition Edge Sensors (TES) based microcalorimeters operating at a temperature of 100mK. The imaging array consists of 3800 pixels providing 2.5 eV spectral resolution, and covers a field of view with a diameter of of 5 arc minutes. Multiplexed readout of the cryogenic microcalorimeter array is essential to comply with the cooling power and complexity constraints on a space craft. Frequency domain multiplexing has been under development for the readout of TES-based detectors for this purpose, not only for the X-IFU detector arrays but also for TES-based bolometer arrays for the Safari instrument of the Japanese SPICA observatory. This paper discusses the design considerations which are applicable to optimise the multiplex factor within the boundary conditions as set by the space craft. More specifically, the interplay between the science requirements such as pixel dynamic range, pixel speed, and cross talk, and the space craft requirements such as the power dissipation budget, available bandwidth, and electromagnetic compatibility will be discussed.


Proceedings of SPIE | 2016

The focal plane assembly for the Athena X-ray Integral Field Unit instrument

B. D. Jackson; J. van der Kuur; R. den Hartog; Hiroki Akamatsu; A. Argan; Simon R. Bandler; Marco Barbera; Didier Barret; Marcel P. Bruijn; J. A. Chervenak; Johannes Dercksen; F. Gatti; L. Gottardi; D. Haas; J. W. den Herder; Caroline A. Kilbourne; Mikko Kiviranta; T. Lam-Trong; B. J. van Leeuwen; C. Macculi; L. Piro; S. J. Smith

This paper summarizes a preliminary design concept for the focal plane assembly of the X-ray Integral Field Unit on the Athena spacecraft, an imaging microcalorimeter that will enable high spectral resolution imaging and point-source spectroscopy. The instruments sensor array will be a ~ 3840-pixel transition edge sensor (TES) microcalorimeter array, with a frequency domain multiplexed SQUID readout system allowing this large-format sensor array to be operated within the thermal constraints of the instruments cryogenic system. A second TES detector will be operated in close proximity to the sensor array to detect cosmic rays and secondary particles passing through the sensor array for off-line coincidence detection to identify and reject events caused by the in-orbit high-energy particle background. The detectors, operating at 55 mK, or less, will be thermally isolated from the instrument cryostats 2 K stage, while shielding and filtering within the FPA will allow the instruments sensitive sensor array to be operated in the expected environment during both on-ground testing and in-flight operation, including straylight from the cryostat environment, low-energy photons entering through the X-ray aperture, low-frequency magnetic fields, and high-frequency electric fields.


Review of Scientific Instruments | 2016

Calibration of the microcalorimeter spectrometer on-board the Hitomi (Astro-H) observatory (invited).

Megan E. Eckart; G. V. Brown; Meng Chiao; Ryuichi Fujimoto; D. Haas; J. W. den Herder; Yoshitaka Ishisaki; R. L. Kelley; Caroline A. Kilbourne; M. A. Leutenegger; D. McCammon; Kazuhisa Mitsuda; Frederick Scott Porter; Makoto Sawada; Gary A. Sneiderman; A. E. Szymkowiak; Yoh Takei; Makoto Tashiro; Masahiro Tsujimoto; C. P. de Vries; Tomomi Watanabe; S. Yamada; Noriko Y. Yamasaki

The Hitomi Soft X-ray Spectrometer (SXS) was a pioneering non-dispersive imaging x-ray spectrometer with 5 eV FWHM energy resolution, consisting of an array of 36 silicon-thermistor microcalorimeters at the focus of a high-throughput soft x-ray telescope. The instrument enabled astrophysical plasma diagnostics in the 0.3-12 keV band. We introduce the SXS calibration strategy and corresponding ground calibration measurements that took place from 2012-2015, including both the characterization of the microcalorimeter array and measurements of the x-ray transmission of optical blocking filters.

Collaboration


Dive into the D. Haas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Megan E. Eckart

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshitaka Ishisaki

Tokyo Metropolitan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Meng P. Chiao

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Gregory V. Brown

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Noriko Y. Yamasaki

Japan Aerospace Exploration Agency

View shared research outputs
Top Co-Authors

Avatar

Richard L. Kelley

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge