D.K. Beede
Michigan State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D.K. Beede.
Journal of Dairy Science | 2011
M. Hollmann; M.S. Allen; D.K. Beede
Increasing supply of corn distillers grains (CDG) raises questions about the extent to which they can be used in diets of lactating dairy cows. A database of treatment means (n=44) reported in 16 peer-reviewed journal articles published from 1985 to 2008 was developed. The database included response (within study) to a CDG diet compared with the control (no CDG) for milk yield (MY), milk fat concentration and yield, CDG content of the diet, and dietary composition of control and CDG diets (% of dietary dry matter). Additionally, corn grain fermentability was classified as high moisture (n=7) or dry (n=37). Data from studies with diets including more than one grain source (n=8) had been eliminated from the analysis. Dietary concentrations of CDG ranged from 4.2 to 42% across studies. Dietary concentrations in diets containing CDG were 16.8±1.91% (mean±standard deviation) crude protein, 36±15.5% corn silage, 23±8.8% corn grain, and 28±5.8% starch. Responses to CDG were 0.5±2.10 kg/cow per day (mean±standard deviation) for MY, 0.05±0.178 percentage units for milk fat concentration, and 26±77.6 g/cow per day for milk fat yield. Only MY response was related to increasing concentrations of CDG in diets and peaked at 1.2 kg/cow per day for 21% CDG. Diet fermentability was associated with responses. The greatest MY response to CDG was with 24% corn silage or 23% starch, and concentrations greater than 47% corn silage or 32% starch resulted in negative MY responses. Responses in MY differed by level of MY and were often more evident in higher- (>30.0 kg MY/d) than in lower-producing cows. Milk fat concentration response was not related to dietary CDG, but was correlated linearly with milk fat concentration of cows fed the control diet. Milk fat concentration greater than 3.6% for the control treatment was related to a negative milk fat concentration response to CDG, regardless of dietary concentration of CDG. Partially replacing high-moisture corn with CDG increased milk fat concentration by 0.16 percentage units compared with that from dry corn. When formulating diets with CDG, diet fermentability and level of MY (higher vs. lower) must be considered. Concentrations of corn silage and starch must be moderate to optimize lactational responses to CDG. Overall, lactational response to CDG in this database was dependent on diet fermentability and milk fat concentration in the control.
Journal of Dairy Science | 2012
M. Hollmann; Wendy J. Powers; A.C. Fogiel; J.S. Liesman; Nora M. Bello; D.K. Beede
To determine if dietary medium-chain fatty acids (FA; C(8) to C(14)) may mitigate enteric methane emissions, 24 cows were blocked by body size (n=2) and randomly assigned to 1 sequence of dietary treatments. Diets were fed for 35 d each in 2 consecutive periods. Diets differed in concentrations of coconut oil (CNO; ~75% medium-chain FA): 0.0 (control) or 1.3, 2.7, or 3.3% CNO, dry matter basis. The control diet contained 50% forage (74% from corn silage), 16.5% crude protein (60% from rumen-degradable protein), 34% neutral detergent fiber (NDF; 71% from forage), and 28% starch, dry matter basis. Data and sample collections were from d 29 to 35 in environmentally controlled rooms to measure methane (CH(4)) production. Methane emitted was computed from the difference in concentrations of inlet and outlet air and flux as measured 8 times per day. Control cows emitted 464 g of CH(4)/d, consumed 22.9 kg of DM/d, and produced 34.8 kg of solids-corrected milk/d and 1.3 kg of milk fat/d. Treatment with 1.3, 2.7, or 3.3% dietary CNO reduced CH(4) (449, 291, and 253 g/d, respectively), but concomitantly depressed dry matter intake (21.4, 17.9, and 16.2 kg/d, respectively), solids-corrected milk yield (36.3, 28.4, and 26.8 kg/d, respectively), and milk fat yield (1.4, 0.9, and 0.9 kg/d, respectively). The amount of NDF digested in the total tract decreased with increased dietary CNO concentrations; thus, CH(4) emitted per unit of NDF digested rose from 118 to 128, 153, and 166 g/kg across CNO treatments. Dietary CNO did not significantly affect apparent digestibility of CP but increased apparent starch digestibility from 92 to 95%. No FA C(10) or shorter were detected in feces, and apparent digestibility decreased with increasing FA chain length. Coconut oil concentrations of 2.7 or 3.3% decreased yields of milk FA C(14). The highest milk fat concentration (3.69%; 1.3% CNO) was due to the greatest yields of C(12) to C(16) milk FA. Milk FA concentrations of C(18:2 trans-10,cis-12) were related to increased dietary CNO concentrations and presumably to depressed ruminal NDF digestion. Moderate dietary CNO concentrations (e.g., 1.3%) may benefit lactational performance; however, CNO concentrations greater than or equal to 2.7% depressed dry matter intake, milk yield, milk fat yield, and NDF utilization. If mitigation of enteric CH(4) emissions is due to decreased digestion of dietary NDF, then this will lessen a major advantage of ruminants compared with nonruminants in food-production systems. Thus, CNO has limited use for enteric CH(4) mitigation in lactating dairy cows.
Journal of Dairy Science | 2009
J.A. Davidson; D.K. Beede
The objective was to determine if exercise training improves physical fitness of nonlactating, late-pregnant and nonpregnant multiparous Holstein cows and alters acid-base homeostasis during an exercise test on a treadmill. Twenty-six pairs (each pair having 1 late-pregnant and 1 nonpregnant) of cows were assigned to treatments of exercise training or no exercise. Exercise training was walking (1.25 to 1.5 h at 3.25 km/h) every other day in an outdoor mechanical walker for 70 d. Cows completed treadmill exercise tests on d 0, 30, and 60 of the experiment or about d 70, 40, and 10 before expected parturition of the pregnant cow of each pair. On d 0, physical fitness was similar among all cows based on durations of treadmill tests, heart rates, and acid-base measurements at given workloads (21.1 +/- 0.6 min; 144 +/- 2.2 beats per min; plasma lactate 3.1 +/- 1.9 mmol/L; and venous blood pH 7.44 +/- 0.0035, respectively). After 60 d of training, exercised cows walked longer during treadmill exercise tests compared with nonexercised cows (23.7 vs. 18.3 +/- 0.85 min, respectively), indicating greater physical fitness (pooled across pregnancy status). Heart rates and plasma lactate concentrations at given workloads were less (144 vs. 156 +/- 2.7 beats per min; and 1.4 vs. 3.2 +/- 0.24 mmol/L for exercised compared with nonexercised cows, respectively). Additionally, exercised cows more effectively maintained acid-base homeostasis during treadmill tests compared with nonexercised cows. Metabolic, endocrine, and nutritional demands associated with late pregnancy did not affect responses differently to exercise training for late-pregnant compared with nonpregnant cows. Overall, exercise training of late-pregnant and nonpregnant cows for 60 d improved physical fitness.
Journal of Dairy Science | 2013
O.N. Genther; D.K. Beede
Drinking water can contain high concentrations of Fe, mainly of the ferrous (Fe(2+)) valence. The current recommended upper tolerable concentration of Fe in drinking water for cattle (0.3mg/L) comes from guidelines for human palatability, but cattle may be able to tolerate higher concentrations. Our objective was to determine the effects of varying concentrations of ferrous (Fe(2+)) or ferric (Fe(3+)) iron and Fe salt source on lactating dairy cows preferences for and drinking behavior of water offered as choices ad libitum. In 4 separate experiments, cows were offered pairs of water treatments for 22-h periods and water intake and drinking behavior were recorded. In experiment 1, treatments were 0, 4, or 8 mg of total recoverable Fe/L from ferrous lactate. Cows exhibited no preference between water with 0 or 4 mg of Fe/L, but water intake was less with 8 compared with 0 or 4 mg of Fe/L. Also, cows spent less time drinking water containing 8 mg of Fe/L. Total time spent drinking correlated positively with water intake when pooled across treatments. In experiment 2, treatments were 0 or 8 mg of Fe/L from either ferrous sulfate (FeSO(4)) or ferric sulfate [Fe(2)(SO(4))(3)]. Water intake did not differ among treatments. In experiment 3, treatments were 0 (control), 12.5, or 8 mg of Fe/L from ferrous chloride (FeCl(2)) or ferric chloride (FeCl(3)), respectively. Again, cows exhibited no preference among treatments. In experiment 4, treatments were 0 or 8 mg of Fe/L from ferrous lactate [Fe(C(3)H(5)O(3))(2)], ferrous sulfate (FeSO(4)), or ferrous chloride (FeCl(2)). Cows preferred to drink water without added Fe, but did not exhibit any preference among waters containing the Fe sources with different anionic moieties. Cows spent less time drinking and drank less frequently when offered water containing 12.5mg of total recoverable Fe/L from ferrous chloride compared with 8.0mg of Fe/L from ferrous lactate or ferrous sulfate. Water intake correlated positively with both drinking duration and frequency when pooled across treatments in experiment 4. Overall, our results indicate that upon first exposure to drinking water, lactating dairy cows tolerate concentrations of Fe up to 4 mg/L from ferrous lactate without reducing water intake; however, water intake was reduced with 8 mg of total recoverable Fe. Preference did not appear to be influenced by Fe valence or added Fe source.
Journal of Dairy Science | 2012
M. Hollmann; D.K. Beede
Dietary medium-chain fatty acids (C(8:0) through C(12:0)) are researched for their potential to reduce enteric methane emissions and to increase N utilization efficiency in ruminants. We aimed to 1) compare coconut oil (CNO; ~60% medium-chain fatty acids) with a source of long-chain fatty acids (animal fat blend; AFB) on lactational responses in a high-starch diet and 2) determine the effect of different dietary concentrations of CNO on dry matter intake (DMI). In experiment 1, the control diet (CTRL) contained (dry basis) 40% forage (71% corn silage, and alfalfa hay and haylage), 26% NDF, and 35% starch. Isonitrogenous treatment diets contained 5.0% of AFB (5%-AFB), CNO (5%-CNO), or a 1-to-1 mixture of AFB and CNO (5%-AFB-CNO) and 0.8% corn gluten meal in place of corn grain. Thirty-two multiparous dairy cows (201 ± 46 d postpartum; 42.0 ± 5.5 kg/d 3.5% fat-corrected milk yield) were adapted to CTRL, blocked by milk yield, and randomly assigned to 1 of 4 treatment diets for 21 d with samples and data collected from d 15 through 21. Treatment 5%-CNO decreased DMI markedly and precipitously and was discontinued after d 5. In wk 3, 5%-AFB and especially 5%-AFB-CNO lowered total-tract NDF digested vs. CTRL (2.6 vs. 1.8 vs. 3.1 kg/d, respectively), likely because fat treatments reduced DMI and 5%-AFB-CNO impaired total-tract NDF digestibility. Milk fat concentrations were 3.10% (CTRL), 2.51% (5%-AFB), and 1.97% (5%-AFB-CNO) and correlated negatively to concentrations of C(18:2 trans-10,cis-12) in milk fat. Additionally, 5%-AFB and 5%-AFB-CNO tended to lower milk yield and decreased yields of solids-corrected milk and milk protein compared with CTRL. Fat treatments decreased milk lactose concentration, but increased milk citrate concentration. Moreover, cows fed 5%-AFB-CNO produced less solids-corrected milk than did cows fed 5%-AFB. In experiment 2, diets similar to CTRL contained 2.0, 3.0, or 4.0% CNO. Fifteen multiparous cows (219 ± 42 d postpartum; 42.1 ± 7.0 kg milk yield; mean ± SD) were blocked by DMI and randomly assigned to 1 of 3 treatment diets for an 8-d evaluation. Dietary concentration of CNO affected DMI, with the greatest depression at 4.0% CNO. Overall, dietary CNO depressed DMI and NDF digestibility of a high-starch diet compared with AFB. Feeding CNO to lactating cows equal to or greater than 2.5% decreased lactational performance or DMI.
Journal of Dairy Science | 2009
Z.H. Myers; D.K. Beede
The objective was to evaluate estimates of the inevitable fecal loss component of the P maintenance requirement of lactating Holstein cows consuming differing amounts of a low-P diet. The maintenance requirement for P is the sum of inevitable (e.g., unavoidable) endogenous fecal P plus endogenous urinary P when an animal is fed near its true P requirement (i.e., zero P balance). Urinary excretion of P is normally very low in healthy cattle. Inevitable fecal P is the main part of the total P maintenance requirement; it can be expressed as grams of fecal P/kilogram of dry matter intake (DMI). Twenty-one multiparous lactating Holstein cows (55 to 253 +/- 6 d in milk, range +/- SD; 0 to 171 +/- 64 d pregnant) with a wide range of pretrial milk yields (25.3 to 47.3 +/- 1.23 kg/cow per day) were selected to achieve a range in DMI and assigned to treatment groups of low, medium, and high DMI. To obtain an even greater range in DMI, rations fed to cows in the low and medium treatment groups were restricted to 75 and 50% of their pretrial ad libitum intakes, respectively. Dry matter intakes during the experiment averaged 11.3 (low), 15.3 (medium), and 25.1 (high) kg/cow per d, respectively. All cows were fed the same low-P diet (0.26% P, dry basis) throughout the experiment. Phosphorus balances of cows in all treatments were not different from zero and unaffected by DMI. Average daily total inevitable fecal P excretion was 15.3, 18.2, and 26.3 g/cow for low, medium, and high DMI, respectively. Inevitable fecal P excretion was 1.36, 1.19, and 1.04 g/kg of DMI for low, medium, and high and decreased linearly with increasing DMI. The regression equation to estimate inevitable fecal P excretion across the range of DMI was: (g/d) = [0.85 +/- 0.070 (g/d)] x DMI (kg/d) + [5.30 +/- 1.224 (g/d)]; (R(2) = 0.90). This equation can be used to estimate the inevitable fecal P component of the total P maintenance requirement of lactating Holstein cows.
Journal of Dairy Science | 2011
M. Hollmann; M.S. Allen; D.K. Beede
Diet fermentability influences lactational responses to feeding corn distillers grains (CDG) to dairy cows. However, some measures of diet fermentability are inherently related to the concentration and characteristics of corn-based ingredients in the ration. Corn-based feeds have poor protein quality, unable to meet the essential AA requirements of lactating cows. We conducted a meta-analysis of treatment means (n=44) from the scientific literature to evaluate responses in milk yield (MY) and milk true protein concentration and yield to dietary CDG. The test variable was the difference in response between the CDG diet mean and the control diet mean (0% CDG) within experiment. Fixed variables were CDG concentration of the diet [% of dietary dry matter (DM)] and crude protein (CP) concentration and fractions of CP based on origin (corn-based versus non-corn-based feeds) of control and CDG diets. Diets with CDG ranged from 4 to 42% CDG, DM basis. Non-corn-based dietary CP averaged 6.3±3.32% of total DM. Milk yield and milk true protein yield responses to added CDG were maximized when approximately 8.5% of the total dietary DM was non-corn-based CP. Milk yield response peaked for higher-producing cows (>30.0 kg MY/cow per day) at 4.3% dietary corn-based CP, but decreased linearly for lower-producing cows (<30.0 kg MY/cow per day) as corn-based dietary CP increased. Milk true protein yield response decreased as corn-based dietary CP concentration increased but milk true protein concentration response was not decreased when CDG diets had more than 6.5% dietary non-corn-based CP. Overall, 8.5% dietary non-corn-based CP was necessary in lactation diets to maximize lactational responses to dietary CDG. The necessity of dietary non-corn-based CP to maximize milk and milk protein yields limits the amount of dietary corn-based CP, including that from CDG, which can be included in rations without overfeeding N.
Journal of Dairy Science | 2015
F.E. Contreras-Govea; V.E. Cabrera; L.E. Armentano; R.D. Shaver; P.M. Crump; D.K. Beede; M.J. VandeHaar
A survey was conducted in Wisconsin (WI) and Michigan (MI) to quantify the proportion of farms that use a single diet for all lactating cows and to better understand the reasons for current grouping strategies and the limitations to grouping for better nutritional management. A questionnaire was mailed to all WI dairy farmers with ≥200 lactating cows (971 farms) and to a random sample of grade-A MI dairy farmers (800 farms) of varying herd sizes. The survey return rate was 20% in WI (196 farms) and 26% in MI (211 farms; 59 of them had ≥200 lactating cows). Feeding 2 or more different diets to lactating cows was predominant: 63% in WI (124 farms, all ≥200 lactating cows), 76% in MI farms with ≥200 lactating cows (45 farms), and 28% in MI farms with <200 lactating cows (43 farms). Farmers feeding more than 1 diet used 1 or more of the following criteria for grouping lactating cows: stage of lactation, milk production, or body condition score. Overall for both states, 52% of the farms (211 from 407 farms) feeding more than 1 diet grouped cows according to their nutritional needs. However, a notable population of farms fed the same diet to all lactating cows: 37% in WI (72 farms), 24% in MI (14 farms) for herds of ≥200 lactating cows, and 72% in MI for herds of <200 lactating cows (109 MI farms). Desire to keep it simple and milk drops when cows are moved to a different group were identified as main constraints to having more groups within a farm for nutritional purposes. Farm facilities and labor were also limiting factors to grouping in farms with herd sizes of <200 lactating cows.
Journal of Dairy Science | 2013
M. Hollmann; Wendy J. Powers; A.C. Fogiel; J.S. Liesman; D.K. Beede
Dietary coconut oil (CNO) can reduce dry matter intake (DMI), enteric methane (eCH(4)) emissions, and milk fat yield of lactating cows. The goals of this research were to examine responses to different CNO concentrations during the habituation period (34-d) and to evaluate temporal patterns of DMI, eCH(4), and milk fat yield. Treatment diets contained (dry basis): 0.0% (CNO0), 1.3% (CNO1.3), 2.7% (CNO2.7), 3.3% (CNO3.3), or 4.0% CNO (CNO4). In experiment 1, 12 primi- or small secundiparous cows were housed in individual, environmentally controlled rooms and fed CNO0, CNO1.3, CNO2.7, or CNO4. Measurements included DMI, eCH(4), and milk yield and composition. Due to a precipitous drop in DMI (26%), cows fed CNO4 were replaced with cows fed CNO3.3 following d 10. Dietary CNO of 2.7% or more reduced eCH(4) emissions. Reduction was greater with increased CNO and during the first than the second half of the day. Simultaneously, decline in DMI of cows fed CNO2.7, CNO3.3, or CNO4 was increasingly precipitous with increased CNO concentration. Total-tract neutral detergent fiber (NDF) digestibility during wk 5 was reduced in cows fed CNO2.7 or CNO3.3, which in part explained concomitantly reduced eCH(4)/DMI. In addition, milk fat yield was depressed at an increasing rate in cows fed CNO2.7, CNO3.3, and CNO4. In experiment 2, DMI was measured individually in 12 multiparous cows during habituation to CNO0, CNO1.3, CNO2.7, or CNO3.3 for 21 d before relocation to individual, environmentally controlled rooms. Dietary CNO2.7 or CNO3.3 reduced DMI by d 4 and total-tract NDF digestibility during wk 5. Relocation to individual rooms was associated with a 15% reduction in DMI, which was not affected by treatment. Results showed that 2.7% or more dietary CNO reduced eCH(4) and DMI, caused milk fat depression, and decreased NDF digestibility.
Journal of Dairy Science | 2000
Stanley J. Moore; M.J. VandeHaar; B.K. Sharma; T.E. Pilbeam; D.K. Beede; H.F. Bucholtz; J.S. Liesman; Ronald L. Horst; Jesse P. Goff