D.K. Combs
University of Wisconsin-Madison
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D.K. Combs.
Theriogenology | 1990
D.J. Carroll; R.A. Pierson; Elizabeth R. Hauser; R.R. Grummer; D.K. Combs
Weekly reproductive health examinations were performed on 46 multiparous Holstein cows from 14 to 100 d post partum. Sixteen cows developed 19 nonsimultaneous ovarian cysts, with a mean day of first detection at 34.3 +/- 4.5 d post partum and a mean duration of 31.0 +/- 4.3 d after first detection. Coccygeal blood was collected three times weekly, and plasma progesterone concentrations were determined by radioimmunoassay. Cysts were diagnosed by palpation per rectum or by ultrasonography and classified as follicular or luteal cysts; the cows were not treated. Cows with a mean plasma progesterone concentration of < 1 ng/ml from the first day of detection (Day 1) of a cyst until Day 10 were classified as having a follicular cyst, and those with a mean plasma progesterone concentration of >or= 1 ng/ml from Day 1 to Day 10 were classified as having a luteal cyst. According to this classification, 58% of the cysts were follicular and 42% were luteal. There was an overall 47% agreement between classification by palpation and by ultrasonography on Day 1 with progesterone concentration during Days 1 to 10 after detection of the cyst. Detailed graphs of progesterone concentrations and area of largest follicles or cysts and corpora lutea demonstrate the variability of ovarian structures and progesterone profiles in cystic cows. Detection of a cyst at any one time accompanied by simultaneous measurement of progesterone can lead to different diagnoses of cyst type depending on the method of classification, the presence and age of luteinized tissue in the cyst and undetected corpora lutea.
Journal of Dairy Science | 2009
C. Kendall; C. Leonardi; P.C. Hoffman; D.K. Combs
The objectives of this study were to determine how feeding diets that differed in dietary neutral detergent fiber (NDF) concentration and in vitro NDF digestibility affects dry matter (DM) intake, ruminal fermentation, and milk production in early lactation dairy cows. Twelve rumen-cannulated, multiparous Holstein cows averaging 38 +/- 15 d (+/-standard deviation) in milk, and producing 40 +/- 9 kg of milk daily, were used in a replicated 4 x 4 Latin square design with 28-d periods. Treatment diets were arranged in a 2 x 2 factorial with 28 or 32% dietary NDF (DM basis) and 2 levels of straw NDF digestibility: 1) LD, untreated wheat straw (77% NDF, 41% NDF digestibility) or 2) HD, anhydrous NH(3)-treated wheat straw (76% NDF, 62% NDF digestibility). All 4 diets consisted of wheat straw, alfalfa silage, corn silage, and a concentrate mix of cracked corn grain, corn gluten meal, 48% soybean meal, and vitamins and minerals. Wheat straw comprised 8.5% DM of the 28% NDF diets and 16% DM of the 32% NDF diets. Cows fed 28% NDF and HD diets produced more milk, fat, and protein than those consuming 32% NDF or LD diets. Dry matter intake was greater for cows consuming 28% NDF diets, but intakes of DM and total NDF were not affected by in vitro NDF digestibility. Intake of digestible NDF was greater for cows consuming HD diets. Ruminal fermentation was not affected by feeding diets that differed in NDF digestibility. Ruminal NDF passage rate was slower for cows fed HD than LD. No interactions of dietary NDF concentration and in vitro NDF digestibility were observed for any parameter measured. Regardless of dietary NDF concentration, increased in vitro NDF digestibility improved intake and production in early lactation dairy cows.
Journal of Dairy Science | 2009
J.P. Goeser; D.K. Combs
Interassay error caused by the inconsistent nature of rumen fluid inoculum confounds comparisons of forage in vitro neutral detergent fiber (NDF) digestibility (NDFD) analyzed in different repetitions or laboratories. Our objective was to determine if priming rumen fluid and allowing it to produce a standard amount of gas before inoculating samples improved assay repeatability. In 2 experiments, we compared interassay error of NDFD estimates between several in vitro assays. In both experiments, dried, ground (1 mm) alfalfa samples (0.5 g) sealed in bags were placed in 125-mL Erlenmeyer flasks and incubated with in vitro media and 10 mL of rumen fluid. In experiment A, rumen fluid was collected from a cannulated cow fed a high forage diet and prepared one of 2 ways; rumen fluid was either used immediately after it was collected and strained through cheese cloth (GVA), or strained fluid was combined with buffer, reducing solution, and 12.5 mg of cellulose/mL of rumen fluid and allowed to produce a consistent amount of gas before inoculation (RPA). The assay was repeated 5 times, with 13 samples per method. In experiment B, inoculum was prepared one of 3 ways; RPA, GVA except rumen fluid was collected and pooled from 2 cows (GVB), or RPA with fluid pooled from 2 cows. The in vitro assays were repeated 5 times with 8 samples per method. Neutral detergent fiber was analyzed using a forage fiber analyzer and 24-h NDFD was determined as: NDFD (% of NDF) = 100 x [(NDF(0h) - NDF(residue))/(NDF(0h))]. Data for each experiment were analyzed using a mixed model procedure and repetition sum of squares for each technique was determined and compared with an F-test to assess technique interassay error. In both experiments, rumen fluid priming significantly reduced repetition sums of squares, 51.2 versus 503 and 23.3 versus 164, compared with the respective GVA or GVB. However, priming significantly decreased NDFD values, 22.5 versus 24.8 and 23.9 versus 26.6%, compared with GVA and GVB, respectively. Priming rumen fluid with cellulose improved in vitro NDFD assay precision, but depressed in vitro NDFD.
Journal of Dairy Science | 2010
K.A. Kruse; D.K. Combs; N.M. Esser; W.K. Coblentz; P.C. Hoffman
Ninety-six Holstein heifers (400±6kg, 15.2±0.1 mo), including 9 with ruminal cannulas, were offered 1 of 3 diets for 180±8 d in a randomized replicated pen design. Dietary treatments included a control diet (C100) and 2 independent limit-fed (LF) diets. The LF diets included one offered at 85% of C100 intake (L85) without an ionophore, and a second containing an ionophore (325 mg/head per day of lasalocid) that was offered at 80% of C100 intake (L80+I). Heifers were evaluated for growth, rumen digesta volume, nutrient excretion, and subsequent lactation performance. Limit-fed heifers consumed less dry matter and neutral detergent fiber, and had greater respective average daily gains (0.96 or 0.89 vs. 0.81 kg/d), and lower feed:gain ratios (9.1 or 9.3 vs. 13.0 kg/kg) compared with heifers offered the C100 diet. No differences in rumen pH, NH(3)-N, or volatile fatty acid concentrations were observed between C100 and LF heifers. Rumen digesta volume, density, and weight were unaffected by LF, and feeding L85 or L80+I did not result in carryover effects for rumen digesta volume when these heifers were offered a common high-fiber diet immediately after the 180-d growth trial. At parturition, no differences were observed for dystocia index, calf body weight, or 7-d postpartum body weight between cows offered LF or C100 diets as heifers. Lactation body weight, dry matter intake, and feed efficiency of cows did not differ between treatments at 45 or 90 d in milk. Milk yield and milk components also were not different between cows that were offered C100 or LF diets as gravid heifers. At 45 d in milk, rumen digesta volume was greater (99.1 vs. 66.1L) for cows offered L85 compared with cows offered L80+I as gravid heifers, but this effect was not observed at 90 d in milk. Limit feeding of gravid Holstein heifers for 180 d did not result in any carryover effects during their first lactation for rumen digesta volume, dry matter intake, or milk yield.
Journal of Dairy Science | 2008
D.K. Combs; G.F. Hartnell
The objective of this experiment was to assess if feeding glyphosate-tolerant alfalfa affects feed intake, milk composition, or milk production of dairy cows. One alfalfa (Medicago sativa), variety expressing the CP4 EPSPS protein and grown in southeastern Washington State was harvested at the late vegetative stage as hay. Three commercial conventional varieties of alfalfa hay of similar nutrient composition and harvested in the same geographic region were fed to cows as controls. The commercial hays were selected to be similar in crude protein [18% of dry matter (DM)] and neutral detergent fiber (40% of DM) to the glyphosate-tolerant hay. Sixteen multiparous Holstein cows were fed diets containing alfalfa hay (39.7% of diet DM) from either the glyphosate-tolerant alfalfa, or 1 of the 3 conventional varieties. Diets contained at least 15.7% crude protein and 29% neutral detergent fiber. Experimental design was a replicated 4 x 4 Latin square. Periods were 28 d and feed intake, milk yield, and milk composition were summarized over the last 14 d of each period. Daily milk yield (38.0 kg) and 4% fat-corrected milk (34.7 kg) were not affected by treatment. Milk fat (3.44%) and milk true protein (2.98%) were also not affected by source of hay. Milk lactose (4.72%) and soldis-not-fat (8.5%) did not differ due to treatment. Dry matter intake was similar across treatments (24.4 kg/d). These results are consistent with data from feeding trials with other glyphosate-tolerant crops and previously reported compositional comparisons of glyphosate-tolerant alfalfa with controls. Milk production, milk composition, feed intake, and feed efficiency were not affected by feeding diets that contained nearly 40% glyphosate-tolerant alfalfa hay to lactating dairy cows.
Journal of Dairy Science | 2013
X.S. Guo; D.J. Undersander; D.K. Combs
This study evaluated the effects of Lactobacillus plantarum with or without Lactobacillus buchneri on the fermentation and aerobic stability of mixed tall fescue (Festuca arundinacea Schreb) and meadow fescue (Festuca pratensis Huds.) silage ensiled at different dry matter (DM) contents. The first cut was harvested at boot stage and second-cut grasses were harvested when 30- to 35-cm tall. Four DM content treatments of the first cut were 17.9, 24.9, 34.6, and 48.7%; and of the second cut were 29.1, 36.3, 44.1, and 49.2%. Chopped grasses at each DM content were treated with (1) deionized water (control), (2) Lb. plantarum MTD-1 (LP), or (3) a combination of Lb. plantarum MTD-1 and Lb. buchneri 40788 (LP+LB). The application amount of each inoculant to the fresh forage was 1 × 10(6) cfu/g. Grasses were ensiled in vacuum-sealed polyethylene bags containing 150 g of DM for 60 d, with 4 replicates for each treatment. Silages inoculated with LP+LB had greater pH compared with untreated or LP-treated silages. Lactate was greater in LP silage than control or LP+LB silages. As silage DM increased, lactate in untreated and LP-treated silages decreased, but increased in LP+LB-treated silage. Acetate concentration decreased with increased DM in all silages. The LP+LB-treated silage had the longest and control silage the shortest aerobic stability for both harvests. The greatest values in aerobic stability were observed in silages with highest DM content. In this study, aerobic stability of grass mixes ensiled between 18 and 44% DM content increased as the percentage of DM increased. The LP and LP+LB inoculants improved aerobic stability of silages harvested between 18 and 44% DM content.
Journal of Dairy Science | 2015
F. Lopes; K. Ruh; D.K. Combs
The experimental objective was to validate an in vitro model to predict total-tract neutral detergent fiber (NDF) digestibility in dairy cattle. Twenty-one diets from 7 studies conducted at University of Wisconsin-Madison were analyzed for in vitro fiber digestibility. Forages varied among diets (corn, alfalfa, tall and meadow fescue, and wheat straw silages) and nutrient composition (ranges: NDF = 22.5 to 33.8%; crude protein = 15.8 to 18.9%; nonfiber carbohydrates = 38.0 to 51.0%). Total-tract NDF digestibility (TTNDFD) observed in in vivo trials was determined using different markers as described in the individual studies. The in vitro TTNDFD model predicted total-tract fiber digestibility from the proportion of total NDF potentially digestible (pdNDF), rate of pdNDF degradation, and rate of passage of pdNDF. The model predicted TTNDFD similar to in vivo measurements. The relationship between TTNDFD measured in vivo and TTNDFD predicted by the in vitro assay was significant (R(2) = 0.68). The relationship between in vitro 30-h NDF digestibility values and in vivo total-tract NDF digestibility values was not significant, whereas in vitro 48-h NDF digestibility values were correlated (R(2) = 0.30) with in vivo TTNDFD measurements. Indigestible NDF (iNDF) showed a negative relationship (R(2) = 0.40) with TTNDFD in vivo. Each 1-percentage-unit increase of iNDF resulted in a decrease of 0.96 percentage units of total-tract NDF digestibility; however, iNDF by itself was not a good predictor of TTNDFD because of the difference among the means. This study showed that an in vitro TTNDFD model that uses iNDF, pdNDF, and rates of pdNDF digestion and passage can predict (R(2) = 0.68) total-tract NDF digestibility. Most importantly, we demonstrated the ability to predict total-tract fiber digestibility from a model based on in vitro NDF degradation, which could improve our ability to optimize forage utilization and milk production.
Journal of Dairy Science | 2009
J.P. Goeser; P.C. Hoffman; D.K. Combs
Recently, we developed an alternate method to measure in vitro neutral detergent fiber (NDF) digestibility (ivNDFD) based on a primed rumen fluid inoculum. Pretreating rumen fluid inoculum with cellulose and holding the inoculum until it generated 0.3 mL of gas/mL of rumen fluid before inoculating forage samples improved ivNDFD assay repeatability but depressed ivNDFD means. Our objective in this study was to determine if pretreating rumen fluid with a mixture of carbohydrates and urea would affect the ivNDFD mean and variance. We also used the modified procedure as a reference assay to calibrate near-infrared reflectance spectroscopy (NIRS) to predict 24-, 30-, and 48-h ivNDFD. Two experiments were completed. In experiment A, 3 ivNDFD assays modified from the method of Goering and Van Soest were evaluated over 24, 28, 48, 54, and 72 h by using dried, ground alfalfa (1 mm) or wheat straw (0.5 g) sealed in Ankom F57 forage fiber bags. Bags were placed individually in 125-mL Erlenmeyer flasks and incubated with Goering and Van Soest media and 10 mL of rumen fluid. Rumen fluid was collected before feeding from 2 cannulated cows fed a high-forage diet and was prepared in 1 of 3 ways: 1) pooled rumen fluid was strained and used immediately to inoculate flasks (modified Goering and Van Soest method); 2) strained, pooled fluid was combined with buffer, reducing solution, and 1.25 mg of primer/mL of rumen fluid and allowed to produce 0.12 mL of gas/mL of rumen fluid before sample inoculation [Combs-Goeser (CG) method]; or 3) the CG method was used without the primer mixture (unprimed method). The assay was repeated 5 times, with 5 time points (24, 28, 48, 54, and 72 h) and 2 subsamples per time point for each method. Neutral detergent fiber was analyzed using an Ankom(200) forage fiber analyzer and ivNDFD was determined as follows: ivNDFD (% of NDF) = 100 x [(NDF(0h) - NDF(residue))/(NDF(0h))]. Results were analyzed using a mixed model procedure, and data were blocked by method to obtain repetition sums of squares, which were compared by an F-test to assess interassay error. Repetition sums of squares were reduced with the CG method compared with the Goering and Van Soest method (19 vs. 228), and mean ivNDFD estimates were similar at 28, 48, and 54 h. In experiment B, 24-, 30-, and 48-h ivNDFD data for 54 feeds were determined in triplicate using the CG method, and corresponding samples were then scanned with an NIRS instrument. Calibrations were computed using partial least squares regression techniques. The NIRS calibration equation R(2) values were 0.93, 0.93, and 0.89 for 24-, 30-, and 48-h ivNDFD. Results suggest that the modified ivNDFD method using rumen fluid primed with a mixture of carbohydrate and urea (CG method) reduced interassay error.
Journal of Dairy Science | 2014
R.W. Bender; Katherine S. Hackbart; A.R. Dresch; Paulo de Tarso Camillo de Carvalho; L.M. Vieira; P.M. Crump; J.N. Guenther; P.M. Fricke; R.D. Shaver; D.K. Combs; M.C. Wiltbank
Multiple metabolic and hormonal factors can affect the success of protocols for ovarian superstimulation. In this study, the effect of acute feed restriction and increased LH content in the superstimulatory FSH preparation on numbers of ovulations, fertilization, and embryo quality in lactating dairy cows was evaluated. Two experiments were performed using a Latin square design with treatments arranged as a 2 × 2 factorial: feed restriction (FR; 25% reduction in dry matter intake) compared with ad libitum (AL) feeding, combined with high (H) versus low (L) LH in the last 4 injections of the superstimulatory protocol. As expected, FR decreased circulating insulin concentrations (26.7 vs. 46.0 μU/mL). Two analyses were performed: one that evaluated the complete Latin square in experiment 2 and a second that evaluated only the first periods of experiments 1 and 2. For both analyses, follicle numbers, ovulation rates, and corpora lutea on d 7 were not different. In the first period analysis of experiments 1 and 2, we observed an interaction between feed allowance and amount of LH on fertilization rates, percentage of embryos or oocytes that were quality 1 and 2 embryos, and number of embryos or oocytes that were degenerate. Fertilization rates were greater for the AL-L (89.4%) and FR-H (80.1%) treatments compared with the AL-H (47.9%) and FR-L (59.9%) treatments. Similarly, the proportion of total embryos or oocytes designated as quality 1 and 2 embryos was greater for AL-L (76.7%) and FR-H (73.4%) treatments compared with AL-H (35.6%) and FR-L (47.3%) treatments. In addition, the number of degenerate embryos was decreased for AL-L (1.3) and FR-H (0.4) treatments compared with the AL-H (2.6) and FR-L (2.3) treatments. Thus, cows with either too low (FR-L) or too high (AL-H) insulin and LH stimulation had lesser embryo production after superstimulation because of reduced fertilization rate and increased percentage of degenerate embryos. Therefore, interaction of the gonadotropin content of the superstimulatory preparation with the nutritional program of the donor cow needs to be considered to optimize success of ovarian superstimulatory protocols.
Journal of Dairy Science | 2008
C.M. Mikolayunas; D.L. Thomas; K.A. Albrecht; D.K. Combs; Y.M. Berger; S.R. Eckerman
The majority of dairy sheep in the world are fed pasture and supplemental grain during lactation; however, no trials have reported the effects of supplementation of dairy ewes grazing improved pastures in North America. In trial 1, 56 three-year-old grazing dairy ewes in early [21 +/- 10 d in milk (DIM)] or late (136 +/- 9 DIM) lactation were fed 0 or 0.82 kg of dry matter/d per ewe of supplement (16.5% crude protein mixture of corn and a soybean meal-based high-protein pellet) in a 2 x 2 factorial arrangement of treatments. There were no significant interactions between stage of lactation and supplementation treatments. Average test-day milk production was higher in early-lactation ewes than in late-lactation ewes (1.74 vs. 1.21 kg/d, respectively). Although test-day milk protein percentage was higher in late-lactation ewes than in early-lactation ewes (5.02 vs. 4.86%, respectively), there was no difference in milk fat percentage between stages of lactation. Supplemented ewes had higher milk production (1.59 vs. 1.36 kg/d, respectively), lower milk fat percentage (5.75 vs. 6.00%, respectively), and lower milk protein percentage (4.84 vs. 5.04%, respectively) than unsupplemented ewes. Milk urea N levels were similar between the 2 stages of lactation and between the 2 supplementation treatments and were above recommended levels for dairy sheep, indicating an excess intake or inefficient utilization of protein for both supplementation treatments. In trial 2, 96 two-, three-, and four-year-old grazing dairy ewes in midlactation (112 +/- 21 DIM) were randomly assigned to 4 treatments of 0, 0.41, 0.82, or 1.24 kg of dry matter/d per ewe of whole corn. Average test-day milk production increased linearly and milk fat percentage decreased quadratically with increasing amounts of corn supplementation. Milk protein yield increased linearly, and milk urea N levels decreased quadratically with increasing amounts of corn supplementation, suggesting an improvement in the utilization of pasture protein with increasing dietary energy intake.