Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D.K. Owens is active.

Publication


Featured researches published by D.K. Owens.


Journal of Nuclear Materials | 1984

Attainment of high confinement in neutral beam heated divertor discharges in the PDX tokamak

S. Kaye; M.G. Bell; K. Bol; D. A. Boyd; K. Brau; D. Buchenauer; Robert V. Budny; A. Cavallo; P. Couture; T. Crowley; D.S. Darrow; H.P. Eubank; R.J. Fonck; R.J. Goldston; B. Grek; K. P. Jaehnig; D. Johnson; R. Kaita; H. Kugel; B. Leblanc; J. Manickam; D. Manos; D.K. Mansfield; E. Mazzucato; R. McCann; D. McCune; K. McGuire; D. Mueller; A. Murdock; M. Okabayashi

Abstract The PDX divertor configuration has recently been converted from an open to a closed geometry to inhibit the return of neutral gas from the divertor region to the main chamber. Since then, operation in a regime with high energy confinement in neutral beam heated discharges (ASDEX H-mode) has been routine over a wide range of operating conditions. These H-mode discharges are characterized by a sudden drop in divertor density and H α emission and a spontaneous rise in main chamber plasma density during neutral beam injection. The confinement time is found to scale nearly linearly with plasma current, but can be degraded due either to the presence of edge instabilities or heavy gas puffing. Detailed Thomson scattering temperature profiles show high values of T c near the plasma edge (∼ 450 eV) with sharp radial gradients (∼ 400 eV/cm) near the separatrix. Density profiles are broad and also exhibit steep gradients close to the separatrix.


Physics of fluids. B, Plasma physics | 1991

High poloidal beta equilibria in the Tokamak Fusion Test Reactor limited by a natural inboard poloidal field null

Steven Anthony Sabbagh; R. A. Gross; M.E. Mauel; G.A. Navratil; M.G. Bell; R. E. Bell; M. Bitter; N. Bretz; R.V. Budny; C.E. Bush; M. S. Chance; P.C. Efthimion; E. D. Fredrickson; R. Hatcher; R.J. Hawryluk; S. P. Hirshman; A. Janos; Stephen C. Jardin; D.L. Jassby; J. Manickam; D. McCune; K. McGuire; S.S. Medley; D. Mueller; Y. Nagayama; D.K. Owens; M. Okabayashi; H. Park; A. T. Ramsey; B. C. Stratton

Recent operation of the Tokamak Fusion Test Reactor (TFTR) [Plasma Phys. Controlled Nucl. Fusion Research 1, 51 (1986)] has produced plasma equilibria with values of Λ≡βp eq+li/2 as large as 7, eβp dia≡2μ0e〈p⊥〉/〈〈Bp〉〉2 as large as 1.6, and Troyon normalized diamagnetic beta [Plasma Phys. Controlled Fusion 26, 209 (1984); Phys. Lett. 110A, 29 (1985)], βNdia≡108〈βt⊥〉aB0/Ip as large as 4.7. When eβp dia≳1.25, a separatrix entered the vacuum chamber, producing a naturally diverted discharge that was sustained for many energy confinement times, τE. The largest values of eβp and plasma stored energy were obtained when the plasma current was ramped down prior to neutral beam injection. The measured peak ion and electron temperatures were as large as 24 and 8.5 keV, respectively. Plasma stored energy in excess of 2.5 MJ and τE greater than 130 msec were obtained. Confinement times of greater than 3 times that expected from L‐mode predictions have been achieved. The fusion power gain QDD reached a value of 1.3×10−...


Journal of Nuclear Materials | 1989

First-wall conditioning for enhanced confinement discharges and the DT experiments in TFTR

H.F. Dylla; M. Ulrickson; M.G. Bell; D.K. Owens; D. Buchenauer; R.V. Budny; K. W. Hill; S.J. Kilpatrick; D. Manos; P. H. LaMarche; A. T. Ramsey; G.L. Schmidt; M. C. Zarnstorff

The conditioning techniques applied to the TFTR first-wall configuration that will be in place for the DT experiments in 1990–1991 are reviewed. Of primary interest is the helium conditioning procedure that was developed to control hydrogenic recycling from the graphite, inner-wall bumper limiter. Operation of TFTR over the plasma density range for gas-fueled ohmic plasmas, ne = (2–5) × 1019m−3, typically results in hydrogenic recycling coefficients near unity. The use of the helium conditioning procedure produced recycling coefficients as low as 0.5, and decreased the minimum ohmic plasma density to ne = 0.5 × 1019m−3 at IP = 0.8 MA. Low density ohmic target plasmas with low recycling conditions are prerequisite conditions for the enhanced confinement (e.g., “supershot”), neutral-beam-heated discharges observed in TFTR during 1986–1987, which is the primary mode being considered for study in the DT experiments. The recycling changes induced by the helium conditioning procedure are believed to be the result of a plasma pumping effect in the graphite induced by He and C ion desorption of hydrogenic species from the near-surface (< 20 nm) layer of the limiter. The capacity of the conditioned limiter to pump gas-fueled, pellet-fueled, and neutral-beam-fueled discharges is compared. The helium conditioning technique is also beneficial for isotopic exchange and for minimizing the in-vessel tritium inventory.


Physics of fluids. B, Plasma physics | 1990

Correlations of heat and momentum transport in the TFTR tokamak

S.D. Scott; V. Arunasalam; Cris W. Barnes; M.G. Bell; M. Bitter; R. Boivin; N. Bretz; R.V. Budny; C.E. Bush; A. Cavallo; T. K. Chu; S.A. Cohen; P. Colestock; S. Davis; D. Dimock; H.F. Dylla; P.C. Efthimion; A. B. Erhrardt; R.J. Fonck; E. D. Fredrickson; H. P. Furth; R.J. Goldston; G. J. Greene; B. Grek; L.R. Grisham; G. W. Hammett; R.J. Hawryluk; H. W. Hendel; K. W. Hill; E. Hinnov

Measurements of the toroidal rotation speed vφ(r) driven by neutral beam injection in tokamak plasmas and, in particular, simultaneous profile measurements of vφ, Ti, Te, and ne, have provided new insights into the nature of anomalous transport in tokamaks. Low‐recycling plasmas heated with unidirectional neutral beam injection exhibit a strong correlation among the local diffusivities, χφ≊χi>χe. Recent measurements have confirmed similar behavior in broad‐density L‐mode plasmas. These results are consistent with the conjecture that electrostatic turbulence is the dominant transport mechanism in the tokamak fusion test reactor tokamak (TFTR) [Phys. Rev. Lett. 58, 1004 (1987)], and are inconsistent with predictions both from test‐particle models of strong magnetic turbulence and from ripple transport. Toroidal rotation speed measurements in peaked‐density TFTR ‘‘supershots’’ with partially unbalanced beam injection indicate that momentum transport decreases as the density profile becomes more peaked. In hi...


Nuclear Fusion | 1995

Collisional stochastic ripple diffusion of alpha particles and beam ions on TFTR

M.H. Redi; M. C. Zarnstorff; R. B. White; R.V. Budny; A. Janos; D.K. Owens; J. Schivell; S.D. Scott; S.J. Zweben

Predictions for ripple loss of fast ions from TFTR are investigated with a guiding centre code including both collisional and ripple effects. A synergistic enhancement of fast ion diffusion is found for toroidal field ripple with collisions. The total loss is calculated to be roughly twice the sum of ripple and collisional losses calculated separately. Discrepancies between measurements and calculations of plasma beta at low current and large major radius are resolved when both effects are included for neutral beam ions. A 20 to 30% reduction in alpha particle heating is predicted for qa=6-14, R=2.6 m DT plasmas on TFTR owing to first orbit and collisional stochastic ripple diffusion


Journal of Nuclear Materials | 1982

Impurity levels and power loading in the pdx tokamak with high power neutral beam injection

R.J. Fonck; M.G. Bell; K. Bol; K. Brau; R. V. Budny; J.L. Cecchi; S.A. Cohen; S. Davis; H.F. Dylla; R.J. Goldston; B. Grek; R.J. Hawryluk; J. Hirschberg; D. Johnson; R. Hulse; R. Kaita; S. Kaye; R.J. Knize; H. Kugel; D. Manos; D.K. Mansfield; K. McGuire; D. Mueller; K. Oasa; M. Okabayashi; D.K. Owens; J. Ramette; R. Reeves; M. Reusch; G.L. Schmidt

Abstract The PDX tokamak provides an experimental facility for the direct comparison of various impurity control techniques under reactor-like conditions. Four neutral beam lines inject > 6 MW for 300 ms. Carbon rail limiter discharges have been used to test the effectiveness of perpendicular injection, but non-disruptive full power operation for > 100 ms is difficult without extensive conditioning. Initial tests of a toroidal bumper limiter indicate reduced power loading and roughly similar impurity levels compared to the carbon rail limiter discharges. Poloidal divertor discharges with up to 5 MW of injected power are cleaner than similar circular discharges, and the power is deposited in a remote divertor chamber. High density divertor operation indicates a reduction of impurity flow velocity in the divertor and enhanced recycling in the divertor region during neutral injection.


Journal of Nuclear Materials | 1984

Initial limiter and getter operation in TFTR

Joseph L. Cecchi; M.G. Bell; M. Bitter; W. Blanchard; N. Bretz; C.E. Bush; S.A. Cohen; J. Coonrod; S. Davis; D. Dimock; B.L. Doyle; H.F. Dylla; P.C. Efthimion; R.J. Fonck; R.J. Goldston; S. von Goeler; B. Grek; D.J. Grove; R.J. Hawryluk; D.B. Heifetz; H. W. Hendel; K. W. Hill; R. Hulse; J. Isaacson; D. Johnson; L. C. Johnson; R. Kaita; S. Kaye; S.J. Kilpatrick; J. Kiraly

Abstract During the recent ohmic heating experiments on TFTR, the movable limiter array, preliminary inner bumper limiter, and prototype ZrAl alloy bulk getter surface pumping system were brought into operation. This paper summarizes the operational experience and plasma characteristics obtained with these components. The near-term upgrades of these systems are also discussed.


Journal of Nuclear Materials | 1984

Initial results from the scoop limiter experiment in PDX

R. V. Budny; M.G. Bell; K. Bol; D. A. Boyd; D. Buchenauer; A. Cavallo; P. Couture; T. Crowley; D.S. Darrow; H.F. Dylla; R.J. Fonck; R. Gilpin; R.J. Goldston; B. Grek; W. W. Heidbrink; D. Heifetz; K. P. Jaehnig; D. Johnson; R. Kaita; S. Kaye; R.J. Knize; H. Kugel; B. LeBlanc; D. Manos; D.K. Mansfield; E. Mazzucato; T. McBride; R. McCann; D. McCune; K. McGuire

Abstract A particle scoop limiter with a graphite face backed by a 50 liter volume for collecting particles was used in PDX. Experiments were performed to test its particle control and power handling capabilities with up to 5 MW of D° power injected into D+ plasmas. Line average plasma densities of up to 8 × 1013 cm−3 and currents up to 450 kA were obtained. Plasma densities in the scoop channels greater than 2 × 1013 cm−3 and neutral densities in the scoop volume greater than 5 × 1014 cm−3 were observed. There is evidence that recycling may have occurred in the scoop channels for several discharges with large line-averaged plasma density. At beam powers up to 2.5 MW, energy confinement times above 40 ms were deduced from magnetics measurements and from transport analysis. Pressures in the vacuum vessel were in the 10 −5 Torr range, and recycling source neutral densities in the central plasma were low.


Fusion Technology | 1992

Status and plans for TFTR

R.J. Hawryluk; D. Mueller; J. Hosea; Cris W. Barnes; Michael Beer; M.G. Bell; R. Bell; H. Biglari; M. Bitter; R. Boivin; N. Bretz; R. V. Budny; C.E. Bush; Liu Chen; C. Z. Cheng; Steven C. Cowley; D. S. Dairow; P.C. Efthimion; R. J. Fonck; E. D. Fredrickson; H. P. Furth; G. J. Greene; B. Grek; L. Grisham; G. W. Hammett; W.W. Heidbrink; K. W. Hill; D. J. Hoffman; R. Hulse; H. Hsuan

AbstractRecent research on TFTR has emphasized optimization of performance in deuterium plasmas, transport studies and studies of energetic ion and fusion product physics in preparation for the D-T experiments that will commence in July of 1993. TFTR has achieved full hardware design parameters, and the best TFTR discharges in deuterium are projected to QDT of 0.3 to 0.5.The physics phenomena that will be studied during the D-T phase will include: tritium particle confinement and fueling, ICRF heating with tritium, species scaling with tritium, collective alpha-particle instabilities, alpha heating of the plasma and helium ash buildup. It is important for the fusion program that these physics issues be addressed to identify regimes of benign alpha behavior, and to develop techniques to actively stabilize or control instabilities driver by collective alpha effects.


Nuclear Fusion | 1995

Alfven frequency modes at the edge of TFTR plasmas

Z. Chang; E. D. Fredrickson; S.J. Zweben; H. Park; R. Nazikian; E. Mazzucato; S.H. Batha; M.G. Bell; Robert V. Budny; C.E. Bush; D.S. Darrow; D. Ernst; G. Y. Fu; R.J. Hawryluk; K. W. Hill; J. Hosea; A. Janos; D.L. Jassby; D. Johnson; L. C. Johnson; F. M. Levinton; D.K. Mansfield; K. McGuire; David Mikkelsen; D. Mueller; D.K. Owens; A. T. Ramsey; Steven Anthony Sabbagh; E. J. Synakowski; H. Takahashi

An Alfven frequency mode (AFM) is very often seen in TFTR neutral beam heated plasmas as well as in ohmic plasmas. This quasi-coherent mode has so far only been seen on magnetic fluctuation diagnostics (Mirnov coils). A close correlation between the plasma edge density and the mode activity (frequency and amplitude) has been observed, which indicates that the AFM is an edge localized mode with r/a>0.85. No direct impact of this mode on the plasma global performance or on fast ion loss (e.g., the alpha particles in DT experiments) has been observed. This mode is not the conventional TAE (toroidicity induced Alfven eigenmode). The present TAE theory cannot explain this observation. Other possible explanations are discussed

Collaboration


Dive into the D.K. Owens's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Grek

Princeton University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge