Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D.L. Buczkowski is active.

Publication


Featured researches published by D.L. Buczkowski.


Science | 2012

Vesta's shape and morphology

R. Jaumann; David A. Williams; D.L. Buczkowski; R. A. Yingst; Frank Preusker; Harald Hiesinger; N. Schmedemann; T. Kneissl; Jean-Baptiste Vincent; David T. Blewett; Bonnie J. Buratti; U. Carsenty; Brett W. Denevi; M.C. De Sanctis; W.B. Garry; H. U. Keller; Elke Kersten; Katrin Krohn; J.-Y. Li; S. Marchi; Klaus-Dieter Matz; T. B. McCord; Harry Y. McSween; Scott C. Mest; D. W. Mittlefehldt; S. Mottola; A. Nathues; G. Neukum; David Patrick O'Brien; Carle M. Pieters

A New Dawn Since 17 July 2011, NASAs spacecraft Dawn has been orbiting the asteroid Vesta—the second most massive and the third largest asteroid in the solar system (see the cover). Russell et al. (p. 684) use Dawns observations to confirm that Vesta is a small differentiated planetary body with an inner core, and represents a surviving proto-planet from the earliest epoch of solar system formation; Vesta is also confirmed as the source of the howardite-eucrite-diogenite (HED) meteorites. Jaumann et al. (p. 687) report on the asteroids overall geometry and topography, based on global surface mapping. Vestas surface is dominated by numerous impact craters and large troughs around the equatorial region. Marchi et al. (p. 690) report on Vestas complex cratering history and constrain the age of some of its major regions based on crater counts. Schenk et al. (p. 694) describe two giant impact basins located at the asteroids south pole. Both basins are young and excavated enough amounts of material to form the Vestoids—a group of asteroids with a composition similar to that of Vesta—and HED meteorites. De Sanctis et al. (p. 697) present the mineralogical characterization of Vesta, based on data obtained by Dawns visual and infrared spectrometer, revealing that this asteroid underwent a complex magmatic evolution that led to a differentiated crust and mantle. The global color variations detailed by Reddy et al. (p. 700) are unlike those of any other asteroid observed so far and are also indicative of a preserved, differentiated proto-planet. Spacecraft data provide a detailed characterization of the second most massive asteroid in the solar system. Vesta’s surface is characterized by abundant impact craters, some with preserved ejecta blankets, large troughs extending around the equatorial region, enigmatic dark material, and widespread mass wasting, but as yet an absence of volcanic features. Abundant steep slopes indicate that impact-generated surface regolith is underlain by bedrock. Dawn observations confirm the large impact basin (Rheasilvia) at Vesta’s south pole and reveal evidence for an earlier, underlying large basin (Veneneia). Vesta’s geology displays morphological features characteristic of the Moon and terrestrial planets as well as those of other asteroids, underscoring Vesta’s unique role as a transitional solar system body.


Science | 2012

The geologically recent giant impact basins at Vesta's south pole.

Paul M. Schenk; David Patrick O'Brien; S. Marchi; Robert W. Gaskell; Frank Preusker; Thomas Roatsch; R. Jaumann; D.L. Buczkowski; Thomas B. McCord; Harry Y. McSween; David A. Williams; Aileen Yingst; C.A. Raymond; C. T. Russell

A New Dawn Since 17 July 2011, NASAs spacecraft Dawn has been orbiting the asteroid Vesta—the second most massive and the third largest asteroid in the solar system (see the cover). Russell et al. (p. 684) use Dawns observations to confirm that Vesta is a small differentiated planetary body with an inner core, and represents a surviving proto-planet from the earliest epoch of solar system formation; Vesta is also confirmed as the source of the howardite-eucrite-diogenite (HED) meteorites. Jaumann et al. (p. 687) report on the asteroids overall geometry and topography, based on global surface mapping. Vestas surface is dominated by numerous impact craters and large troughs around the equatorial region. Marchi et al. (p. 690) report on Vestas complex cratering history and constrain the age of some of its major regions based on crater counts. Schenk et al. (p. 694) describe two giant impact basins located at the asteroids south pole. Both basins are young and excavated enough amounts of material to form the Vestoids—a group of asteroids with a composition similar to that of Vesta—and HED meteorites. De Sanctis et al. (p. 697) present the mineralogical characterization of Vesta, based on data obtained by Dawns visual and infrared spectrometer, revealing that this asteroid underwent a complex magmatic evolution that led to a differentiated crust and mantle. The global color variations detailed by Reddy et al. (p. 700) are unlike those of any other asteroid observed so far and are also indicative of a preserved, differentiated proto-planet. Spacecraft data provide a detailed characterization of the second most massive asteroid in the solar system. Dawn’s global mapping of Vesta reveals that its observed south polar depression is composed of two overlapping giant impact features. These large basins provide exceptional windows into impact processes at planetary scales. The youngest, Rheasilvia, is 500 kilometers wide and 19 kilometers deep and finds its nearest morphologic analog among large basins on low-gravity icy satellites. Extensive ejecta deposits occur, but impact melt volume is low, exposing an unusual spiral fracture pattern that is likely related to faulting during uplift and convergence of the basin floor. Rheasilvia obliterated half of another 400-kilometer-wide impact basin, Veneneia. Both basins are unexpectedly young, roughly 1 to 2 billion years, and their formation substantially reset Vestan geology and excavated sufficient volumes of older compositionally heterogeneous crustal material to have created the Vestoids and howardite–eucrite–diogenite meteorites.


Icarus | 2012

Delivery of dark material to Vesta via carbonaceous chondritic impacts

Vishnu Reddy; Lucille Le Corre; David P. O’Brien; A. Nathues; Edward A. Cloutis; Daniel D. Durda; William F. Bottke; Megha Upendra Bhatt; David Nesvorny; D.L. Buczkowski; Jennifer E.C. Scully; E. Palmer; H. Sierks; Paul Mann; Kris J. Becker; Andrew W. Beck; David W. Mittlefehldt; Jian-Yang Li; Robert W. Gaskell; C. T. Russell; Michael J. Gaffey; Harry Y. McSween; Thomas B. McCord; Jean-Philippe Combe; David T. Blewett

NASA’s Dawn spacecraft observations of Asteroid (4) Vesta reveal a surface with the highest albedo and color variation of any asteroid we have observed so far. Terrains rich in low albedo dark material (DM) have been identified using Dawn Framing Camera (FC) 0.75 lm filter images in several geologic settings: associated with impact craters (in the ejecta blanket material and/or on the crater walls and rims); as flow-like deposits or rays commonly associated with topographic highs; and as dark spots (likely secondary impacts) nearby impact craters. This DM could be a relic of ancient volcanic activity or exogenic in origin. We report that the majority of the spectra of DM are similar to carbonaceous chondrite meteorites mixed with materials indigenous to Vesta. Using high-resolution seven color images we compared DM color properties (albedo, band depth) with laboratory measurements of possible analog materials. Band depth and albedo of DM are identical to those of carbonaceous chondrite xenolith-rich howardite Mt. Pratt (PRA) 04401. Laboratory mixtures of Murchison CM2 carbonaceous chondrite and basaltic eucrite Millbillillie also show band depth and albedo affinity to DM. Modeling of carbonaceous chondrite abundance in DM (1–6 vol.%) is consistent with howardite meteorites. We find no evidence for large-scale volcanism (exposed dikes/pyroclastic falls) as the source of DM. Our modeling efforts using impact crater scaling laws and numerical models of ejecta reaccretion suggest the delivery and emplacement of this DM on Vesta during the formation of the � 400 km Veneneia basin by a low-velocity (<2 km/s) carbonaceous impactor. This discovery is important because it strengthens the long-held idea that primitive bodies are the source of carbon and probably volatiles in the early Solar System.


Science | 2016

Dawn Arrives at Ceres: Exploration of a Small Volatile-Rich World

C. T. Russell; C.A. Raymond; E. Ammannito; D.L. Buczkowski; M.C. De Sanctis; Harald Hiesinger; R. Jaumann; Alexander S. Konopliv; Harry Y. McSween; A. Nathues; Ryan S. Park; Carle M. Pieters; T.H. Prettyman; T. B. McCord; L. A. McFadden; S. Mottola; Maria T. Zuber; Steven Peter Joy; C. Polanskey; Marc D. Rayman; Julie C. Castillo-Rogez; P. J. Chi; J.-P. Combe; A. I. Ermakov; Roger R. Fu; M. Hoffmann; Y. D. Jia; Scott D. King; D. J. Lawrence; J.-Y. Li

On 6 March 2015, Dawn arrived at Ceres to find a dark, desiccated surface punctuated by small, bright areas. Parts of Ceres’ surface are heavily cratered, but the largest expected craters are absent. Ceres appears gravitationally relaxed at only the longest wavelengths, implying a mechanically strong lithosphere with a weaker deep interior. Ceres’ dry exterior displays hydroxylated silicates, including ammoniated clays of endogenous origin. The possibility of abundant volatiles at depth is supported by geomorphologic features such as flat crater floors with pits, lobate flows of materials, and a singular mountain that appears to be an extrusive cryovolcanic dome. On one occasion, Ceres temporarily interacted with the solar wind, producing a bow shock accelerating electrons to energies of tens of kilovolts.


Nature | 2015

Sublimation in bright spots on (1) Ceres.

A. Nathues; M. Hoffmann; M. Schaefer; L. Le Corre; Vishnu Reddy; Thomas Platz; Edward A. Cloutis; Ulrich R. Christensen; T. Kneissl; J.-Y. Li; Kurt Mengel; N. Schmedemann; T. Schaefer; C. T. Russell; Daniel M. Applin; D.L. Buczkowski; M. R. M. Izawa; H. U. Keller; David P. O’Brien; Carle M. Pieters; C.A. Raymond; Joachim Ripken; Paul M. Schenk; Britney E. Schmidt; H. Sierks; Mark V. Sykes; Guneshwar Thangjam; Jean-Baptiste Vincent

The dwarf planet (1) Ceres, the largest object in the main asteroid belt with a mean diameter of about 950 kilometres, is located at a mean distance from the Sun of about 2.8 astronomical units (one astronomical unit is the Earth–Sun distance). Thermal evolution models suggest that it is a differentiated body with potential geological activity. Unlike on the icy satellites of Jupiter and Saturn, where tidal forces are responsible for spewing briny water into space, no tidal forces are acting on Ceres. In the absence of such forces, most objects in the main asteroid belt are expected to be geologically inert. The recent discovery of water vapour absorption near Ceres and previous detection of bound water and OH near and on Ceres (refs 5, 6, 7) have raised interest in the possible presence of surface ice. Here we report the presence of localized bright areas on Ceres from an orbiting imager. These unusual areas are consistent with hydrated magnesium sulfates mixed with dark background material, although other compositions are possible. Of particular interest is a bright pit on the floor of crater Occator that exhibits probable sublimation of water ice, producing haze clouds inside the crater that appear and disappear with a diurnal rhythm. Slow-moving condensed-ice or dust particles may explain this haze. We conclude that Ceres must have accreted material from beyond the ‘snow line’, which is the distance from the Sun at which water molecules condense.


Science | 2012

Pitted Terrain on Vesta and Implications for the Presence of Volatiles

Brett W. Denevi; David T. Blewett; D.L. Buczkowski; F. Capaccioni; M. T. Capria; M.C. De Sanctis; W.B. Garry; Robert W. Gaskell; L. Le Corre; Jian-Yang Li; S. Marchi; Timothy J. McCoy; A. Nathues; David Patrick O'Brien; Noah E. Petro; Carle M. Pieters; Frank Preusker; C. A. Raymond; Vishnu Reddy; C. T. Russell; Paul M. Schenk; Jennifer E.C. Scully; Jessica M. Sunshine; F. Tosi; David A. Williams; Deidre L. Wyrick

Vesta to the Core Vesta is one of the largest bodies in the main asteroid belt. Unlike most other asteroids, which are fragments of once larger bodies, Vesta is thought to have survived as a protoplanet since its formation at the beginning of the solar system (see the Perspective by Binzel, published online 20 September). Based on data obtained with the Gamma Ray and Neutron Detector aboard the Dawn spacecraft, Prettyman et al. (p. 242, published online 20 September) show that Vestas reputed volatile-poor regolith contains substantial amounts of hydrogen delivered by carbonaceous chondrite impactors. Observations of pitted terrain on Vesta obtained by Dawns Framing Camera and analyzed by Denevi et al. (p. 246, published online 20 September), provide evidence for degassing of volatiles and hence the presence of hydrated materials. Finally, paleomagnetic studies by Fu et al. (p. 238) on a meteorite originating from Vesta suggest that magnetic fields existed on the surface of the asteroid 3.7 billion years ago, supporting the past existence of a magnetic core dynamo. Analysis of data from the Dawn spacecraft implies that asteroid Vesta is rich in volatiles. We investigated the origin of unusual pitted terrain on asteroid Vesta, revealed in images from the Dawn spacecraft. Pitted terrain is characterized by irregular rimless depressions found in and around several impact craters, with a distinct morphology not observed on other airless bodies. Similar terrain is associated with numerous martian craters, where pits are thought to form through degassing of volatile-bearing material heated by the impact. Pitted terrain on Vesta may have formed in a similar manner, which indicates that portions of the surface contain a relatively large volatile component. Exogenic materials, such as water-rich carbonaceous chondrites, may be the source of volatiles, suggesting that impactor materials are preserved locally in relatively high abundance on Vesta and that impactor composition has played an important role in shaping the asteroid’s geology.


Science | 2016

Cryovolcanism on Ceres

O. Ruesch; Thomas Platz; Paul Schenk; L. A. McFadden; Julie C. Castillo-Rogez; Lynnae C. Quick; Shane Byrne; Frank Preusker; David Patrick O'Brien; N. Schmedemann; David A. Williams; J.-Y. Li; Michael T. Bland; Harald Hiesinger; T. Kneissl; Adrian Neesemann; M. Schaefer; J. H. Pasckert; Britney E. Schmidt; D.L. Buczkowski; Mark V. Sykes; A. Nathues; Thomas Roatsch; M. Hoffmann; C. A. Raymond; C. T. Russell

INTRODUCTION Classic volcanism prevalent on terrestrial planets and volatile-poor protoplanets, such as asteroid Vesta, is based on silicate chemistry and is often expressed by volcanic edifices (unless erased by impact bombardment). In ice-rich bodies with sufficiently warm interiors, cryovolcanism involving liquid brines can occur. Smooth plains on some icy satellites of the outer solar system have been suggested as possibly cryovolcanic in origin. However, evidence for cryovolcanic edifices has proven elusive. Ceres is a volatile-rich dwarf planet with an average equatorial surface temperature of ~160 K. Whether this small (~940 km diameter) body without tidal dissipation could sustain cryovolcanism has been an open question because the surface landforms and relation to internal activity were unknown. RATIONALE The Framing Camera onboard the Dawn spacecraft has observed >99% of Ceres’ surface at a resolution of 35 m/pixel at visible wavelengths. This wide coverage and resolution were exploited for geologic mapping and age determination. Observations with a resolution of 135 m/pixel were obtained under several different viewing geometries. The stereo-photogrammetric method applied to this data set allowed the calculation of a digital terrain model, from which morphometry was investigated. The observations revealed a 4-km-high topographic relief, named Ahuna Mons, that is consistent with a cryovolcanic dome emplacement. RESULTS The ~17-km-wide and 4-km-high Ahuna Mons has a distinct size, shape, and morphology. Its summit topography is concave downward, and its flanks are at the angle of repose. The morphology is characterized by (i) troughs, ridges, and hummocky areas at the summit, indicating multiple phases of activity, such as extensional fracturing, and (ii) downslope lineations on the flanks, indicating rockfalls and accumulation of slope debris. These morphometric and morphologic observations are explained by the formation of a cryovolcanic dome, which is analogous to a high-viscosity silicic dome on terrestrial planets. Models indicate that extrusions of a highly viscous melt-bearing material can lead to the buildup of a brittle carapace at the summit, enclosing a ductile core. Partial fracturing and disintegration of the carapace generates slope debris, and relaxation of the dome’s ductile core due to gravity shapes the topographic profile of the summit. Modeling of this final phase of dome relaxation and reproduction of the topographic profile requires an extruded material of high viscosity, which is consistent with the mountain’s morphology. We constrained the age of the most recent activity on Ahuna Mons to be within the past 210 ± 30 million years. CONCLUSION Cryovolcanic activity during the geologically recent past of Ceres constrains its thermal and chemical history. We propose that hydrated salts with low eutectic temperatures and low thermal conductivities enabled the presence of cryomagmatic liquids within Ceres. These salts are the product of global aqueous alteration, a key process for Ceres’ evolution as recorded by the aqueously altered, secondary minerals observed on the surface. Perspective view of Ahuna Mons on Ceres from Dawn Framing Camera data (no vertical exaggeration). The mountain is 4 km high and 17 km wide in this south-looking view. Fracturing is observed on the mountain’s top, whereas streaks from rockfalls dominate the flanks. Volcanic edifices are abundant on rocky bodies of the inner solar system. In the cold outer solar system, volcanism can occur on solid bodies with a water-ice shell, but derived cryovolcanic constructs have proved elusive. We report the discovery, using Dawn Framing Camera images, of a landform on dwarf planet Ceres that we argue represents a viscous cryovolcanic dome. Parent material of the cryomagma is a mixture of secondary minerals, including salts and water ice. Absolute model ages from impact craters reveal that extrusion of the dome has occurred recently. Ceres’ evolution must have been able to sustain recent interior activity and associated surface expressions. We propose salts with low eutectic temperatures and thermal conductivities as key drivers for Ceres’ long-term internal evolution.


Science | 2016

Cratering on Ceres: Implications for its crust and evolution

Harald Hiesinger; S. Marchi; N. Schmedemann; Paul M. Schenk; J. H. Pasckert; Adrian Neesemann; David Patrick O'Brien; T. Kneissl; A. I. Ermakov; Roger R. Fu; Michael T. Bland; A. Nathues; Thomas Platz; David A. Williams; R. Jaumann; Julie C. Castillo-Rogez; O. Ruesch; Britney E. Schmidt; Ryan S. Park; Frank Preusker; D.L. Buczkowski; C. T. Russell; C.A. Raymond

INTRODUCTION Thermochemical models have predicted that the dwarf planet Ceres has, to some extent, formed a mantle. Moreover, due to viscous relaxation, these models indicate that Ceres should have an icy crust with few or no impact craters. However, the Dawn spacecraft has shown that Ceres has elevation excursions of ~15 km, cliffs, graben, steep-sided mountains, and a heavily cratered surface. RATIONALE We used Dawn’s Framing Camera to study the morphology, size frequency, and spatial distribution of the craters on Ceres. These data allow us to infer the structure and evolution of Ceres’ outer shell. RESULTS A large variety of crater morphologies are present on Ceres, including bowl-shaped craters, polygonal craters, floor-fractured craters, terraces, central peaks, smooth floors, flowlike features, bright spots, secondary craters, and crater chains. The morphology of some impact craters is consistent with water ice in the subsurface. Although this might have favored relaxation, there are also large unrelaxed craters. The transition from bowl-shaped simple craters to modified complex craters occurs at diameters of about 7.5 to 12 km. Craters larger than 300 km are absent, but low-pass filtering of the digital elevation model suggests the existence of two quasi-circular depressions with diameters of ~570 km (125.56°E and 19.60°N) and ~830 km (24.76°W and 0.5°N). Craters are heterogeneously distributed across Ceres’ surface, with more craters in the northern versus the southern hemisphere. The lowest crater densities are associated with large, well-preserved southern hemisphere impact craters such as Urvara and Yalode. Because the low crater density (LCD) terrain extends across a large latitude range in some cases (e.g., Urvara and Yalode: ~18°N and 75°S; Kerwan: ~30°N and 46°S), its spatial distribution is inconsistent with simple relaxation driven by warmer equatorial temperatures. We instead propose that impact-driven resurfacing is the more likely LCD formation process, although we cannot completely rule out an internal (endogenic) origin. We applied two different methodologies to derive absolute model ages from observed crater size-frequency distributions. The lunar-derived model adapts the lunar production and chronology functions to impact conditions on Ceres, taking into account impact velocities, projectile densities, current collision probabilities, and surface gravity. The asteroid-derived model derives a production function by scaling the directly observed object size-frequency distribution from the main asteroid belt (extended to sizes <5 km by a collisional model) to the resulting size-frequency distribution of cerean craters, using similar cerean target parameters as the lunar-derived model. By dating a smooth region associated with the Kerwan crater, we determined absolute model ages of 550 million and 720 million years, depending on which chronology model is applied. CONCLUSION Crater morphology and the simple-to-complex crater transition indicate that Ceres’ outer shell is likely neither pure ice nor pure rock but an ice-rock mixture that allows for limited relaxation. The heterogeneous crater distribution across the surface indicates crustal heterogeneities and a complex geologic evolution of Ceres. There is evidence for at least some geologic activity occurring in Ceres’ recent history. Spatial density of craters larger than 20 km on Ceres. Crater rims are shown as black solid circles. Blue indicates areas with LCDs; yellow and red represent more highly cratered areas. The smallest dashed ellipse denotes the idealized former rim of an extremely degraded impact crater at 48.9°E and 44.9°S, which is barely recognizable in imagery but apparent from the global digital elevation model. Also shown as dashed circles are the outlines of two large putative basins. Unambiguously recognized basins >300 km in diameter are missing, and there are several areas with LCDs associated with large impact craters (e.g., Yalode, Urvara, Kerwan, Ezinu, Vinotonus, Dantu, and two unnamed craters northeast and southeast of Oxo). Areas A and B are topographic rises with central depressions that also show LCDs. Thermochemical models have predicted that Ceres, is to some extent, differentiated and should have an icy crust with few or no impact craters. We present observations by the Dawn spacecraft that reveal a heavily cratered surface, a heterogeneous crater distribution, and an apparent absence of large craters. The morphology of some impact craters is consistent with ice in the subsurface, which might have favored relaxation, yet large unrelaxed craters are also present. Numerous craters exhibit polygonal shapes, terraces, flowlike features, slumping, smooth deposits, and bright spots. Crater morphology and simple-to-complex crater transition diameters indicate that the crust of Ceres is neither purely icy nor rocky. By dating a smooth region associated with the Kerwan crater, we determined absolute model ages (AMAs) of 550 million and 720 million years, depending on the applied chronology model.


Science | 2016

The geomorphology of Ceres

D.L. Buczkowski; Britney E. Schmidt; David A. Williams; Scott C. Mest; J.E.C. Scully; A. I. Ermakov; Frank Preusker; Paul M. Schenk; Katharina A. Otto; Harald Hiesinger; David Patrick O'Brien; S. Marchi; Hanna G. Sizemore; Kynan H.G. Hughson; Heather Chilton; Michael T. Bland; Shane Byrne; Norbert Schorghofer; Thomas Platz; R. Jaumann; Thomas Roatsch; Mark V. Sykes; A. Nathues; M.C. De Sanctis; C.A. Raymond; C. T. Russell

INTRODUCTION Observations of Ceres, the largest object in the asteroid belt, have suggested that the dwarf planet is a geologically differentiated body with a silicate core and an ice-rich mantle. Data acquired by the Dawn spacecraft were used to perform a three-dimensional characterization of the surface to determine if the geomorphology of Ceres is consistent with the models of an icy interior. RATIONALE Instruments on Dawn have collected data at a variety of resolutions, including both clear-filter and color images. Digital terrain models have been derived from stereo images. A preliminary 1:10 M scale geologic map of Ceres was constructed using images obtained during the Approach and Survey orbital phases of the mission. We used the map, along with higher-resolution imagery, to assess the geology of Ceres at the global scale, to identify geomorphic and structural features, and to determine the geologic processes that have affected Ceres globally. RESULTS Impact craters are the most prevalent geomorphic feature on Ceres, and several of the craters have fractured floors. Geomorphic analysis of the fracture patterns shows that they are similar to lunar Floor-Fractured Craters (FFCs), and an analysis of the depth-to-diameter ratios shows that they are anomalously shallow compared with average Ceres craters. Both of these factors are consistent with FFC floors being uplifted due to an intrusion of cryomagma. Kilometer-scale linear structures cross much of Ceres. Some of these structures are oriented radially to large craters and most likely formed due to impact processes. However, a set of linear structures present only on a topographically high region do not have any obvious relationship to impact craters. Geomorphic analysis suggests that they represent subsurface faults and might have formed due to crustal uplift by cryomagmatic intrusion. Domes identified across the Ceres surface present a wide range of sizes (<10 km to >100 km), basal shapes, and profiles. Whether a single formation mechanism is responsible for their formation is still an open question. Cryovolcanic extrusion is one plausible process for the larger domes, although most small mounds (<10-km diameter) are more likely to be impact debris. Differences in lobate flow morphology suggest that multiple emplacement processes have operated on Ceres, where three types of flows have been identified. Type 1 flows are morphologically similar to ice-cored flows on Earth and Mars. Type 2 flows are comparable to long-runout landslides. Type 3 flows morphologically resemble the fluidized ejecta blankets of rampart craters, which are hypothesized to form by impact into ice-rich ground. CONCLUSION The global trend of lobate flows suggests that differences in their geomorphology could be explained by variations in ice content and temperature at the near surface. Geomorphic and topographic analyses of the FFCs suggest that cryomagmatism is active on Ceres, whereas the large domes are possibly formed by extrusions of cryolava. Although spectroscopic analysis to date has identified water ice in only one location on Ceres, the identification of these potentially ice-related features suggests that there may be more ice within localized regions of Ceres’ crust. Dawn high-altitude mapping orbit imagery (140 meters per pixel) of example morphologic features. (A) Occator crater; arrows point to floor fractures. (B) Linear structures, denoted by arrows


Geophysical Research Letters | 2012

Large-scale troughs on Vesta: A signature of planetary tectonics

D.L. Buczkowski; D. Y. Wyrick; Kaushik A. Iyer; E. G. Kahn; Jennifer E.C. Scully; A. Nathues; Robert W. Gaskell; Thomas Roatsch; Frank Preusker; Paul M. Schenk; L. Le Corre; Vishnu Reddy; R. A. Yingst; Scott C. Mest; David A. Williams; W.B. Garry; Olivier S. Barnouin; R. Jaumann; C.A. Raymond; C. T. Russell

Abstract Images of Vesta taken by the Dawn spacecraft reveal large-scale linear structural features on the surface of the asteroid. We evaluate the morphology of the Vesta structures to determine what processes caused them to form and what implications this has for the history of Vesta as a planetary body. The dimensions and shape of these features suggest that they are graben similar to those observed on terrestrial planets, not fractures or grooves such as are found on smaller asteroids. As graben, their vertical displacement versus length relationship could be evaluated to describe and interpret the evolution of the component faults. Linear structures are commonly observed on smaller asteroids and their formation has been tied to impact events. While the orientation of the large-scale Vesta structures does imply that their formation is related to the impact events that formed the Rheasilvia and Veneneia basins, their size and morphology is greatly different from impact-formed fractures on the smaller bodies. This is consistent with new analyses that suggest that Vesta is fully differentiated, with a mantle and core. We suggest that impact into a differentiated asteroid such as Vesta could result in graben, while grooves and fractures would form on undifferentiated asteroids.

Collaboration


Dive into the D.L. Buczkowski's collaboration.

Top Co-Authors

Avatar

C. T. Russell

University of California

View shared research outputs
Top Co-Authors

Avatar

C.A. Raymond

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Jaumann

German Aerospace Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.E.C. Scully

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

David A. Williams

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Paul M. Schenk

Lunar and Planetary Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge