Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. Lansing Taylor is active.

Publication


Featured researches published by D. Lansing Taylor.


Journal of Biomolecular Screening | 1997

High-Content Screening: A New Approach to Easing Key Bottlenecks in the Drug Discovery Process

Kenneth A. Giuliano; Robbin DeBiasio; R. Terry Dunlay; Albert Gough; Joanne M. Volosky; Joseph Zock; George N. Pavlakis; D. Lansing Taylor

Recent improvements in target discovery and high throughput screening (HTS) have increased the pressure at key points along the drug discovery pipeline. High-content screening (HCS) was developed to ease bottlenecks that have formed at target validation and lead optimization points in the pipeline. HCS defines the role of targets in cell functions by combining fluorescence-based reagents with the ArrayScan™ System to automatically extract temporal and spatial information about target activities within cells. The ArrayScan System is a tabletop instrument that includes optics for subcellular resolution of fluorescence signals from many cells in a field within a well of a microtiter plate. One demonstrated application is a high-content screen designed to measure the drug-induced transport of a green fluorescent protein-human glucocorticoid receptor chimeric protein from the cytoplasm to the nucleus of human tumor cells. A high-content screen is also described for the multiparametric measurement of apoptosis. This single screen provides measurements of nuclear size and shape changes, nuclear DNA content, mitochondrial potential, and actin-cytoskeletal rearrangements during drug-induced programmed cell death. The next generation HCS system is a miniaturized screening platform, the CellChip™ System, that will increase the throughput of HCS, while integrating HCS with HTS on the same platform.


Biophysical Journal | 1999

The Actin-Based Nanomachine at the Leading Edge of Migrating Cells

Vivek C. Abraham; Vijaykumar Krishnamurthi; D. Lansing Taylor; Frederick Lanni

Two fundamental parameters of the highly dynamic, ultrathin lamellipodia of migrating fibroblasts have been determined-its thickness in living cells (176 +/- 14 nm), by standing-wave fluorescence microscopy, and its F-actin density (1580 +/- 613 microm of F-actin/microm(3)), via image-based photometry. In combination with data from previous studies, we have computed the density of growing actin filament ends at the lamellipodium margin (241 +/- 100/microm) and the maximum force (1.86 +/- 0.83 nN/microm) and pressure (10.5 +/- 4.8 kPa) obtainable via actin assembly. We have used cell deformability measurements (. J. Cell Sci. 44:187-200;. Proc. Natl. Acad. Sci. USA. 79:5327-5331) and an estimate of the force required to stall the polymerization of a single filament (. Proc. Natl. Acad. Sci. USA. 78:5613-5617;. Biophys. J. 65:316-324) to argue that actin assembly alone could drive lamellipodial extension directly.


Assay and Drug Development Technologies | 2003

Advances in high content screening for drug discovery.

Kenneth A. Giuliano; Jeffrey R. Haskins; D. Lansing Taylor

Cell-based target validation, secondary screening, lead optimization, and structure-activity relationships have been recast with the advent of HCS. Prior to HCS, a computational approach to the characterization of the functions of specific target proteins and other cellular constituents, along with whole-cell functions employing fluorescence cell-based assays and microscopy, required extensive interaction among the researcher, instrumentation, and software tools. Early HCS platforms were instrument-centric and addressed the need to interface fully automated fluorescence microscopy, plate-handling automation, and seamless image analysis. HCS has since evolved into an integrated solution for accelerated drug discovery by encompassing the workflow components of assay and reagent design, robust instrumentation for automated fixed-end-point and live cell kinetic analysis, generalized and specific BioApplication software (Cellomics, Pittsburgh, PA) modules that produce information on drug responses from cell image data, and informatics/bioinformatics solutions that build knowledge from this information while providing a means to globalize HCS throughout an entire organization. This review communicates how these recent advances are incorporated into the drug discovery workflow by presenting a real-world use case.


Trends in Biotechnology | 1998

Fluorescent-protein biosensors: New tools for drug discovery

Kenneth A. Giuliano; D. Lansing Taylor

Recent improvements in target discovery and high-throughput screening have increased the pressure at key points along the drug-discovery pipeline. High-content screening was developed to ease the bottlenecks formed at the target-validation and lead-optimization points, and a new generation of reagents that report on specific molecular processes in living cells (fluorescent-protein biosensors) have been important in its development. Creative designs of fluorescent-protein biosensors have emerged and been used to measure the molecular dynamics of macromolecules, metabolites and ions. Recent applications of fluorescent-protein biosensors to biological problems have provided a foundation for their use in biotechnology.


Biomedical Microdevices | 1999

Streamlining the Drug Discovery Process by Integrating Miniaturization, High Throughput Screening, High Content Screening, and Automation on the CellChip™ System

Ravi Kapur; Kenneth A. Giuliano; Martha Campana; Terri Adams; Keith Olson; David R. Jung; Milan Mrksich; Chandrasekaran Vasudevan; D. Lansing Taylor

A major bottleneck to the early stages of drug discovery is the absence of integration of high throughput screening (HTS) with smarter assays that screen “hits” from HTS to identify leads (High content screening, HCS). We propose a solution using novel fluorescent engineered protein biosensors integrated into a miniaturized live-cell-based screening platform (CellChip™ System) that markedly shortens the early drug discovery process. Microarrays of selectively localized living cells, containing engineered fluorescent biosensors, serve to integrate HTS and HCS onto a single platform. HTS “hits” are identified using one biosensor while reading the whole chip array of cells. The high-biological content information is then obtained from probing target activity at inter-cellular, sub-cellular and molecular levels in the “hit” wells. HCS assays yield temporal-spatial dynamic maps of the drug-target interaction within each living cell. We predict that a new platform incorporating HTS and HCS assays that are automated, miniaturized, and information-rich will dramatically improve the decision making process in the pharmaceutical industry and optimize lead compounds during the early part of the drug discovery process. There is an opportunity to establish a new paradigm for drug discovery based on integration of fluorescence technology, micropatterning of living cells, automated optical detection and data analysis, and a new generation of knowledge building bioinformatics approaches. The technology will have an expansive impact spanning the fields of drug discovery, biomedical research, environmental monitoring, life sciences, and clinical diagnostics. The integrated CellChip™ Platform with miniaturized tissue-specific microarrayed cells capable of providing inter-cellular and sub-cellular spatio-temporal information in response to drug-cell, toxin-cell, or pathogen-cell interactions will serve to enhance the decision making process in drug discovery, toxicology, and clinical diagnostics.


Methods in Cell Biology | 1988

Chapter 13 Basic Fluorescence Microscopy

D. Lansing Taylor

Publisher Summary This chapter describes the different aspects of basic fluorescence microscopy. There are five major attributes of fluorescence as a tool in microscopy. The attributes include specificity, sensitivity, spectroscopy, and temporal resolution. Immunofluorescence has been the most common application of fluorescence microscopy in cell biology. It combines the specificity, sensitivity, and spatial resolution of fluorescence microscopy with the selective binding of antibodies to restricted regions of antigen molecules termed epitopes. Multiple epitopes can be localized in the same cell, on the same or on different molecules, by choosing fluorophores with different fluorescence colors. Fluorescence microscopy is also an important biophysical tool for studies in living cells and in reconstituted preparations in vitro . Fluorophores or fluorochromes are fluorescent dyes or probes that are added to cells. Fluorophores are chosen or synthesized for particular applications based on several criteria. These criteria include absorption and emission spectra, extinction coefficient, quantum yield, environmental effects, and chemical reactivity.


Experimental Biology and Medicine | 2014

In Vitro Platforms for Evaluating Liver Toxicity

Shyam Sundhar Bale; Lawrence Vernetti; Nina Senutovitch; Rohit Jindal; Manjunath Hegde; Albert Gough; William J. McCarty; Ahmet Bakan; Abhinav Bhushan; Tong Ying Shun; Inna Golberg; Richard DeBiasio; Berk Osman Usta; D. Lansing Taylor; Martin L. Yarmush

The liver is a heterogeneous organ with many vital functions, including metabolism of pharmaceutical drugs and is highly susceptible to injury from these substances. The etiology of drug-induced liver disease is still debated although generally regarded as a continuum between an activated immune response and hepatocyte metabolic dysfunction, most often resulting from an intermediate reactive metabolite. This debate stems from the fact that current animal and in vitro models provide limited physiologically relevant information, and their shortcomings have resulted in “silent” hepatotoxic drugs being introduced into clinical trials, garnering huge financial losses for drug companies through withdrawals and late stage clinical failures. As we advance our understanding into the molecular processes leading to liver injury, it is increasingly clear that (a) the pathologic lesion is not only due to liver parenchyma but is also due to the interactions between the hepatocytes and the resident liver immune cells, stellate cells, and endothelial cells; and (b) animal models do not reflect the human cell interactions. Therefore, a predictive human, in vitro model must address the interactions between the major human liver cell types and measure key determinants of injury such as the dosage and metabolism of the drug, the stress response, cholestatic effect, and the immune and fibrotic response. In this mini-review, we first discuss the current state of macro-scale in vitro liver culture systems with examples that have been commercialized. We then introduce the paradigm of microfluidic culture systems that aim to mimic the liver with physiologically relevant dimensions, cellular structure, perfusion, and mass transport by taking advantage of micro and nanofabrication technologies. We review the most prominent liver-on-a-chip platforms in terms of their physiological relevance and drug response. We conclude with a commentary on other critical advances such as the deployment of fluorescence-based biosensors to identify relevant toxicity pathways, as well as computational models to create a predictive tool.


Trends in Biochemical Sciences | 1984

Fluorescent analog cytochemistry

D. Lansing Taylor; P.A. Amato; Katherine Luby-Phelps; Paul L. McNeil

Abstract Functional molecules or organelles, covalently labeled with fluorescent probes, can be re-incorporated into living cells where they reveal native molecular activity in a wide variety of cellular processes.


Journal of Biomolecular Screening | 2004

High-Content Screening with siRNA Optimizes a Cell Biological Approach to Drug Discovery: Defining the Role of P53 Activation in the Cellular Response to Anticancer Drugs

Kenneth A. Giuliano; Yih-Tai Chen; D. Lansing Taylor

Deciphering the effects of compounds on molecular events within living cells is becoming an increasingly important component of drug discovery. In a model application of the industrial drug discovery process, the authors profiled a panel of 22 compounds using hierarchical cluster analysis of multiparameter high-content screening measurements from nearly 500,000 cells per microplate. RNAi protein knockdown methodology was used with high-content screening to dissect the effects of 2 anticancer drugs on multiple target activities. Camptothecin activated p53 in A549 lung carcinoma cells pretreated with scrambled siRNA, exhibited concentration-dependent cell cycle blocks, and induced moderate microtubule stabilization. Knockdown of camptothecin-induced p53 protein expression with p53 siRNA inhibited the G1/S blocking activity of the drug and diminished its microtubule-stabilizing activity. Paclitaxel activated p53 protein at low concentrations but exhibited G2/M cell cycle blocking activity at higher concentrations where microtubules were stabilized. In cells treated with p53 siRNA, paclitaxel failed to activate p53 protein, but the knockdown did not have a significant effect on the ability of paclitaxel to stabilize microtubules or induce a G2/M cell cycle block. Thus, this model application of the use of RNAi technology within the context of high-content screening shows the potential to provide massive amounts of combinatorial cell biological information on the temporal and spatial responses that cells mount to treatment by promising therapeutic candidates.


Experimental Biology and Medicine | 2016

A human liver microphysiology platform for investigating physiology, drug safety, and disease models

Lawrence Vernetti; Nina Senutovitch; Robert C. Boltz; Richard DeBiasio; Tong Ying Shun; Albert Gough; D. Lansing Taylor

This paper describes the development and characterization of a microphysiology platform for drug safety and efficacy in liver models of disease that includes a human, 3D, microfluidic, four-cell, sequentially layered, self-assembly liver model (SQL-SAL); fluorescent protein biosensors for mechanistic readouts; as well as a microphysiology system database (MPS-Db) to manage, analyze, and model data. The goal of our approach is to create the simplest design in terms of cells, matrix materials, and microfluidic device parameters that will support a physiologically relevant liver model that is robust and reproducible for at least 28 days for stand-alone liver studies and microfluidic integration with other organs-on-chips. The current SQL-SAL uses primary human hepatocytes along with human endothelial (EA.hy926), immune (U937) and stellate (LX-2) cells in physiological ratios and is viable for at least 28 days under continuous flow. Approximately, 20% of primary hepatocytes and/or stellate cells contain fluorescent protein biosensors (called sentinel cells) to measure apoptosis, reactive oxygen species (ROS) and/or cell location by high content analysis (HCA). In addition, drugs, drug metabolites, albumin, urea and lactate dehydrogenase (LDH) are monitored in the efflux media. Exposure to 180 μM troglitazone or 210 μM nimesulide produced acute toxicity within 2–4 days, whereas 28 μM troglitazone produced a gradual and much delayed toxic response over 21 days, concordant with known mechanisms of toxicity, while 600 µM caffeine had no effect. Immune-mediated toxicity was demonstrated with trovafloxacin with lipopolysaccharide (LPS), but not levofloxacin with LPS. The SQL-SAL exhibited early fibrotic activation in response to 30 nM methotrexate, indicated by increased stellate cell migration, expression of alpha-smooth muscle actin and collagen, type 1, alpha 2. Data collected from the in vitro model can be integrated into a database with access to related chemical, bioactivity, preclinical and clinical information uploaded from external databases for constructing predictive models.

Collaboration


Dive into the D. Lansing Taylor's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Albert Gough

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Albert H. Gough

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frederick Lanni

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Alan S. Waggoner

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tong Ying Shun

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Adrian V. Lee

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge