Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy R. Lezon is active.

Publication


Featured researches published by Timothy R. Lezon.


Annual review of biophysics | 2010

Global Dynamics of Proteins: Bridging Between Structure and Function

Ivet Bahar; Timothy R. Lezon; Lee-Wei Yang; Eran Eyal

Biomolecular systems possess unique, structure-encoded dynamic properties that underlie their biological functions. Recent studies indicate that these dynamic properties are determined to a large extent by the topology of native contacts. In recent years, elastic network models used in conjunction with normal mode analyses have proven to be useful for elucidating the collective dynamics intrinsically accessible under native state conditions, including in particular the global modes of motions that are robustly defined by the overall architecture. With increasing availability of structural data for well-studied proteins in different forms (liganded, complexed, or free), there is increasing evidence in support of the correspondence between functional changes in structures observed in experiments and the global motions predicted by these coarse-grained analyses. These observed correlations suggest that computational methods may be advantageously employed for assessing functional changes in structure and allosteric mechanisms intrinsically favored by the native fold.


Chemical Reviews | 2010

Normal Mode Analysis of Biomolecular Structures: Functional Mechanisms of Membrane Proteins

Ivet Bahar; Timothy R. Lezon; Ahmet Bakan; Indira H. Shrivastava

1.1. Protein Dynamics and Allostery 1.1.1. Dynamic Equilibrium between Pre-existing Conformations The ability of macromolecules to sample an ensemble of conformations has been evident for decades, starting from the statistical mechanical theory and simulations of polymers.1–3 A polymer chain of N atoms enjoys 3N – 6 internal degrees of freedom, which gives rise to infinitely many conformations. Even a simple model of N = 100 atoms where bond lengths and bond angles are fixed, and dihedral angles are restricted to discrete isomeric states—say three states per bond—has access to 3N–3 = 1.9 × 1046 conformations. Proteins, too, are polymers, and have access to ensembles of conformations. The main structural difference between proteins and other chain molecules is that, under physiological conditions, proteins sample a significantly narrower distribution of conformations compared to disordered polymers. Their conformational variations are confined to the neighborhood of a global energy minimum that defines their “native state”. While the native state has been traditionally viewed as a “unique structure” selected or encoded by the particular amino acid sequence, it is now established by theory, computations, and experiments, after the work of pioneering scientists in the field,4–15 that the native state actually represents an ensemble of microstates: these microstates maintain the overall “fold” and usually share common secondary structure, but they differ in their detailed atomic coordinates. Differences are manifested by variations in bond lengths, bond angles, dihedral angles, loop conformations, substructure packing, or even entire domain or subunit positions and orientations. Importantly, these microstates are not static: there is a dynamic equilibrium which allows for continual interconversions between them while maintaining their probability distribution. These “jigglings and wigglings of atoms” as expressed by Feynman,16 and clearly observed in molecular dynamics (MD) simulations, were originally viewed as random events, or stochastic properties, hardly relevant to biological function. They essentially account for local relaxation phenomena in the nanoseconds regime, which may facilitate, for example, the diffusion of oxygen into the heme cavity of myoglobin17 or the permeation of ions across selectivity filters in ion channels.18–20 However, recent studies indicate that these thermal fluctuations may not only passively facilitate but also actively drive concerted domain movements and/or allosteric interactions, such as those required for substrate binding, ion channel gating, or catalytic function.15,21–34 Figure 1 provides an overview of the broad range of equilibrium motions accessible under native state conditions, ranging from bond length vibrations, of the order of femtoseconds, to coupled movements of multimeric substructures, of the order of milliseconds or seconds. Figure 1 Equilibrium motions of proteins. Motions accessible near native state conditions range from femtoseconds (bond length vibrations) to milliseconds or slower (concerted movements of multiple subunits; passages between equilibrium substates). X-ray crystallographic ... 1.1.2. Functional Significance of Collective Motions In the last two decades, there has been a surge in the number of studies based on principal components analysis (PCA)36 of biomolecular structures and dynamics. These studies have proven useful in unraveling the collective modes, and in particular those at the low frequency end of the mode spectrum, that underlie the equilibrium dynamics of proteins.37 Normal mode analysis (NMA) of equilibrium structures,38,39 essential dynamics analysis (EDA) of the covariance matrices retrieved from MD runs,40 and singular value decomposition (SVD) of MD or Monte Carlo (MC) trajectories41–43 all fall in this category of PCA-based methods. Recently, a server has been developed to efficiently perform such calculations using a variety of input structures.44 PCA-based studies provide increasing support to the view that the apparently random fluctuations of proteins under native state conditions conceal contributions from highly cooperative movements (e.g., concerted opening and closing of domains) that are directly relevant to biological function. Functional movements indeed involve passages between collections of microstates or substates that coexist in a dynamic equilibrium (Figure 2). The most cooperative motions usually occur at the low frequency end of the mode spectrum. These modes engage large substructures, if not the entire structure, hence their designation as global or essential modes. They are intrinsically accessible to biomolecules, arising solely from structure. In a sense, in the same way as sequence encodes structure, structure encodes the equilibrium dynamics. We refer to these global movements that are collectively encoded by the 3-dimensional (3D) structure as intrinsic motions of the examined protein, intrinsic to the protein fold or topology of native contacts. Biomolecular structures conceivably evolved to favor the global modes that help them achieve their biological or allosteric functions.21 Briefly, the emerging paradigm is structure-encodes-dynamics-encodes-function, and an evolutionary pressure originating from functional dynamics requirements may have selected the relatively small space of functional structures. Figure 2 Energy profile of the native state modeled at different resolutions. N denotes the native state, modeled at a coarse-grained scale as a single energy minimum. A more detailed examination of the structure and energetics reveals two or more substates (S1, ... The predisposition of proteins to undergo functional changes in structure is now supported by numerous experimental and computational studies, and an increasing amount of data demonstrates that allosteric responses are driven by intrinsically accessible motions.15,23,24,45–51 These studies have brought a new understanding to the role of collective dynamics in protein functions, demonstrating in particular how the functions of membrane proteins such as signal transduction, pore opening, ion gating, or substrate translocation are enabled by the cooperative movements of symmetrically arranged subunits. These findings are in support of the original Monod–Wyman–Changeux (MWC) view of allosteric effects,52,53 the main tenets of which are predisposition of the structure to access alternative conformations via cooperative changes in structure (simultaneously engaging all subunits) and selection from this pool of accessible conformation to achieve biological function in the presence of ligand/substrate binding. Recent findings on the relevance of global modes to functional dynamics are presented below for select, widely studied membrane proteins. The goal here is to review NMA-based computational methods and their applications to membrane proteins. We will also discuss recent developments for improving the methodology and its implementation in structure refinement and drug discovery methods.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns

Timothy R. Lezon; Jayanth R. Banavar; Marek Cieplak; Amos Maritan; Nina V. Fedoroff

We describe a method based on the principle of entropy maximization to identify the gene interaction network with the highest probability of giving rise to experimentally observed transcript profiles. In its simplest form, the method yields the pairwise gene interaction network, but it can also be extended to deduce higher-order interactions. Analysis of microarray data from genes in Saccharomyces cerevisiae chemostat cultures exhibiting energy metabolic oscillations identifies a gene interaction network that reflects the intracellular communication pathways that adjust cellular metabolic activity and cell division to the limiting nutrient conditions that trigger metabolic oscillations. The success of the present approach in extracting meaningful genetic connections suggests that the maximum entropy principle is a useful concept for understanding living systems, as it is for other complex, nonequilibrium systems.


Bioinformatics | 2014

Evol and ProDy for Bridging Protein Sequence Evolution and Structural Dynamics

Ahmet Bakan; Anindita Dutta; Wenzhi Mao; Ying Liu; Chakra Chennubhotla; Timothy R. Lezon; Ivet Bahar

UNLABELLED Correlations between sequence evolution and structural dynamics are of utmost importance in understanding the molecular mechanisms of function and their evolution. We have integrated Evol, a new package for fast and efficient comparative analysis of evolutionary patterns and conformational dynamics, into ProDy, a computational toolbox designed for inferring protein dynamics from experimental and theoretical data. Using information-theoretic approaches, Evol coanalyzes conservation and coevolution profiles extracted from multiple sequence alignments of protein families with their inferred dynamics. AVAILABILITY AND IMPLEMENTATION ProDy and Evol are open-source and freely available under MIT License from http://prody.csb.pitt.edu/.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release

Yalikun Suofu; Wei Li; Frederic Jean-Alphonse; Jiaoying Jia; Nicolas K. Khattar; Jiatong Li; Sergei V. Baranov; Daniela Leronni; Amanda C. Mihalik; Yanqing He; Erika Cecon; Vanessa L. Wehbi; Jinho Kim; Brianna Heath; Oxana V. Baranova; Xiaomin Wang; Matthew J. Gable; Eric S. Kretz; Giulietta Di Benedetto; Timothy R. Lezon; Lisa M. Ferrando; Timothy M. Larkin; Mara L. Sullivan; Svitlana Yablonska; Jingjing Wang; M. Beth Minnigh; Gérald Guillaumet; Franck Suzenet; R. Mark Richardson; Samuel M. Poloyac

Significance This paper describes the finding that mitochondria synthesize and release melatonin and have their selective G protein-coupled receptor (GPCR) in the outer membrane. We further demonstrate that mitochondrial melatonin type 1 receptors respond to melatonin by activating heterotrimeric G proteins located in the intermembrane space and inhibit stress-mediated cytochrome c release. This remarkable insight changes our classical understanding of biological GPCR function by showing that a cellular organelle both synthesizes and has a signaling receptor for a specific ligand. Implicit with our original work is the existence of an automitocrine signaling pathway by which melatonin prevents neurodegeneration associated with mitochondrial cytochrome c release and downstream caspase activation. G protein-coupled receptors (GPCRs) are classically characterized as cell-surface receptors transmitting extracellular signals into cells. Here we show that central components of a GPCR signaling system comprised of the melatonin type 1 receptor (MT1), its associated G protein, and β-arrestins are on and within neuronal mitochondria. We discovered that the ligand melatonin is exclusively synthesized in the mitochondrial matrix and released by the organelle activating the mitochondrial MT1 signal-transduction pathway inhibiting stress-mediated cytochrome c release and caspase activation. These findings coupled with our observation that mitochondrial MT1 overexpression reduces ischemic brain injury in mice delineate a mitochondrial GPCR mechanism contributing to the neuroprotective action of melatonin. We propose a new term, “automitocrine,” analogous to “autocrine” when a similar phenomenon occurs at the cellular level, to describe this unexpected intracellular organelle ligand–receptor pathway that opens a new research avenue investigating mitochondrial GPCR biology.


Biophysical Journal | 2012

Constraints Imposed by the Membrane Selectively Guide the Alternating Access Dynamics of the Glutamate Transporter GltPh

Timothy R. Lezon; Ivet Bahar

Substrate transport in sodium-coupled amino acid symporters involves a large-scale conformational change that shifts the access to the substrate-binding site from one side of the membrane to the other. The structural change is particularly substantial and entails a unique piston-like quaternary rearrangement in glutamate transporters, as evidenced by the difference between the outward-facing and inward-facing structures resolved for the archaeal aspartate transporter Glt(Ph). These structural changes occur over time and length scales that extend beyond the reach of current fully atomic models, but are regularly explored with the use of elastic network models (ENMs). Despite their success with other membrane proteins, ENM-based approaches for exploring the collective dynamics of Glt(Ph) have fallen short of providing a plausible mechanism. This deficiency is attributed here to the anisotropic constraints imposed by the membrane, which are not incorporated into conventional ENMs. Here we employ two novel (to our knowledge) ENMs to demonstrate that one can largely capture the experimentally observed structural change using only the few lowest-energy modes of motion that are intrinsically accessible to the transporter, provided that the surrounding lipid molecules are incorporated into the ENM. The presence of the membrane reduces the overall energy of the transition compared with conventional models, showing that the membrane not only guides the selected mechanism but also acts as a facilitator. Finally, we show that the dynamics of Glt(Ph) is biased toward transitions of individual subunits of the trimer rather than cooperative transitions of all three subunits simultaneously, suggesting a mechanism of transport that exploits the intrinsic dynamics of individual subunits. Our software is available online at http://www.membranm.csb.pitt.edu.


PLOS ONE | 2014

Identifying and Quantifying Heterogeneity in High Content Analysis: Application of Heterogeneity Indices to Drug Discovery

Albert Gough; Ning Chen; Tong Ying Shun; Timothy R. Lezon; Robert C. Boltz; Celeste E. Reese; Jacob Wagner; Lawrence Vernetti; Jennifer R. Grandis; Adrian V. Lee; Mark E. Schurdak; D. Lansing Taylor

One of the greatest challenges in biomedical research, drug discovery and diagnostics is understanding how seemingly identical cells can respond differently to perturbagens including drugs for disease treatment. Although heterogeneity has become an accepted characteristic of a population of cells, in drug discovery it is not routinely evaluated or reported. The standard practice for cell-based, high content assays has been to assume a normal distribution and to report a well-to-well average value with a standard deviation. To address this important issue we sought to define a method that could be readily implemented to identify, quantify and characterize heterogeneity in cellular and small organism assays to guide decisions during drug discovery and experimental cell/tissue profiling. Our study revealed that heterogeneity can be effectively identified and quantified with three indices that indicate diversity, non-normality and percent outliers. The indices were evaluated using the induction and inhibition of STAT3 activation in five cell lines where the systems response including sample preparation and instrument performance were well characterized and controlled. These heterogeneity indices provide a standardized method that can easily be integrated into small and large scale screening or profiling projects to guide interpretation of the biology, as well as the development of therapeutics and diagnostics. Understanding the heterogeneity in the response to perturbagens will become a critical factor in designing strategies for the development of therapeutics including targeted polypharmacology.


PLOS Computational Biology | 2009

Global motions of the nuclear pore complex: insights from elastic network models.

Timothy R. Lezon; Andrej Sali; Ivet Bahar

The nuclear pore complex (NPC) is the gate to the nucleus. Recent determination of the configuration of proteins in the yeast NPC at ∼5 nm resolution permits us to study the NPC global dynamics using coarse-grained structural models. We investigate these large-scale motions by using an extended elastic network model (ENM) formalism applied to several coarse-grained representations of the NPC. Two types of collective motions (global modes) are predicted by the ENMs to be intrinsically favored by the NPC architecture: global bending and extension/contraction from circular to elliptical shapes. These motions are shown to be robust against tested variations in the representation of the NPC, and are largely captured by a simple model of a toroid with axially varying mass density. We demonstrate that spoke multiplicity significantly affects the accessible number of symmetric low-energy modes of motion; the NPC-like toroidal structures composed of 8 spokes have access to highly cooperative symmetric motions that are inaccessible to toroids composed of 7 or 9 spokes. The analysis reveals modes of motion that may facilitate macromolecular transport through the NPC, consistent with previous experimental observations.


PLOS Computational Biology | 2010

Using entropy maximization to understand the determinants of structural dynamics beyond native contact topology.

Timothy R. Lezon; Ivet Bahar

Comparison of elastic network model predictions with experimental data has provided important insights on the dominant role of the network of inter-residue contacts in defining the global dynamics of proteins. Most of these studies have focused on interpreting the mean-square fluctuations of residues, or deriving the most collective, or softest, modes of motions that are known to be insensitive to structural and energetic details. However, with increasing structural data, we are in a position to perform a more critical assessment of the structure-dynamics relations in proteins, and gain a deeper understanding of the major determinants of not only the mean-square fluctuations and lowest frequency modes, but the covariance or the cross-correlations between residue fluctuations and the shapes of higher modes. A systematic study of a large set of NMR-determined proteins is analyzed using a novel method based on entropy maximization to demonstrate that the next level of refinement in the elastic network model description of proteins ought to take into consideration properties such as contact order (or sequential separation between contacting residues) and the secondary structure types of the interacting residues, whereas the types of amino acids do not play a critical role. Most importantly, an optimal description of observed cross-correlations requires the inclusion of destabilizing, as opposed to exclusively stabilizing, interactions, stipulating the functional significance of local frustration in imparting native-like dynamics. This study provides us with a deeper understanding of the structural basis of experimentally observed behavior, and opens the way to the development of more accurate models for exploring protein dynamics.


Physical Review E | 2006

Geometry of proteins: Hydrogen bonding, sterics, and marginally compact tubes

Jayanth R. Banavar; Marek Cieplak; Alessandro Flammini; Trinh Xuan Hoang; Randall D. Kamien; Timothy R. Lezon; Davide Marenduzzo; Amos Maritan; Flavio Seno; Yehuda Snir; Antonio Trovato

The functionality of proteins is governed by their structure in the native state. Protein structures are made up of emergent building blocks of helices and almost planar sheets. A simple coarse-grained geometrical model of a flexible tube barely subject to compaction provides a unified framework for understanding the common character of globular proteins. We argue that a recent critique of the tube idea is not well founded.

Collaboration


Dive into the Timothy R. Lezon's collaboration.

Top Co-Authors

Avatar

Ivet Bahar

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adrian V. Lee

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Jayanth R. Banavar

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Albert Gough

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ahmet Bakan

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cemal Erdem

University of Pittsburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge