Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. Lee Hamilton is active.

Publication


Featured researches published by D. Lee Hamilton.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages

James A. Timmons; Kristian Wennmalm; Ola Larsson; Tomas B. Walden; Timo Lassmann; Natasa Petrovic; D. Lee Hamilton; Ruth E. Gimeno; Claes Wahlestedt; Keith Baar; Jan Nedergaard; Barbara Cannon

Attainment of a brown adipocyte cell phenotype in white adipocytes, with their abundant mitochondria and increased energy expenditure potential, is a legitimate strategy for combating obesity. The unique transcriptional regulators of the primary brown adipocyte phenotype are unknown, limiting our ability to promote brown adipogenesis over white. In the present work, we used microarray analysis strategies to study primary preadipocytes, and we made the striking discovery that brown preadipocytes demonstrate a myogenic transcriptional signature, whereas both brown and white primary preadipocytes demonstrate signatures distinct from those found in immortalized adipogenic models. We found a plausible SIRT1-related transcriptional signature during brown adipocyte differentiation that may contribute to silencing the myogenic signature. In contrast to brown preadipocytes or skeletal muscle cells, white preadipocytes express Tcf21, a transcription factor that has been shown to suppress myogenesis and nuclear receptor activity. In addition, we identified a number of developmental genes that are differentially expressed between brown and white preadipocytes and that have recently been implicated in human obesity. The interlinkage between the myocyte and the brown preadipocyte confirms the distinct origin for brown versus white adipose tissue and also represents a plausible explanation as to why brown adipocytes ultimately specialize in lipid catabolism rather than storage, much like oxidative skeletal muscle tissue.


Journal of Applied Physiology | 2011

Signals mediating skeletal muscle remodeling by resistance exercise: PI3-kinase independent activation of mTORC1

Andrew Philp; D. Lee Hamilton; Keith Baar

For over 10 years, we have known that the activation of the mammalian target of rapamycin complex 1 (mTORC1) has correlated with the increase in skeletal muscle size and strength that occurs following resistance exercise. Initial cell culture and rodent models of muscle growth demonstrated that the activation of mTORC1 is common to hypertrophy induced by growth factors and increased loading. The further observation that high loads increased the local production of growth factors led to the paradigm that resistance exercise stimulates the autocrine production of factors that act on membrane receptors to activate mTORC1, and this results in skeletal muscle hypertrophy. Over the last few years, there has been a paradigm shift. From both human and rodent studies, it has become clear that the phenotypic and molecular responses to resistance exercise occur in a growth factor-independent manner. Although the mechanism of load-induced mTORC1 activation remains to be determined, it is clear that it does not require classical growth factor signaling.


The Journal of Physiology | 2009

mVps34 is activated following high-resistance contractions

Matthew G. MacKenzie; D. Lee Hamilton; James Murray; Peter M. Taylor; Keith Baar

Following resistance exercise in the fasted state, both protein synthesis and degradation in skeletal muscle are increased. The addition of essential amino acids potentiates the synthetic response suggesting that an amino acid sensor, which is involved in both synthesis and degradation, may be activated by resistance exercise. One such candidate protein is the class 3 phosphatidylinositol 3OH‐kinase (PI3K) Vps34. To determine whether mammalian Vps34 (mVps34) is modulated by high‐resistance contractions, mVps34 and S6K1 (an index of mTORC1) activity were measured in the distal hindlimb muscles of rats 0.5, 3, 6 and 18 h after acute unilateral high‐resistance contractions with the contralateral muscles serving as a control. In the lengthening tibialis anterior (TA) muscle, S6K1 (0.5 h = 366.3 ± 112.08%, 3 h = 124.7 ± 15.96% and 6 h = 129.2 ± 0%) and mVps34 (3 h = 68.8 ± 15.1% and 6 h = 36.0 ± 8.79%) activity both increased, whereas in the shortening soleus and plantaris (PLN) muscles the increase was significantly lower (PLN S6K1 0.5 h = 33.1 ± 2.29% and 3 h = 47.0 ± 6.65%; mVps34 3 h = 24.5 ± 7.92%). HPLC analysis of the TA demonstrated a 25% increase in intramuscular leucine concentration in rats 1.5 h after exercise. A similar level of leucine added to C2C12 cells in vitro increased mVps34 activity 3.2‐fold. These data suggest that, following high‐resistance contractions, mVps34 activity is stimulated by an influx of essential amino acids such as leucine and this may prolong mTORC1 signalling and contribute to muscle hypertrophy.


Biochemical Journal | 2012

Reduction in BACE1 decreases body weight, protects against diet-induced obesity and enhances insulin sensitivity in mice

Paul J. Meakin; Alex J. Harper; D. Lee Hamilton; Jennifer Gallagher; Alison D. McNeilly; Laura A Burgess; Lobke M. Vaanholt; Kirsten A. Bannon; Judy Latcham; Ishrut Hussain; John R. Speakman; David R. Howlett; Michael L.J. Ashford

Insulin resistance and impaired glucose homoeostasis are important indicators of Type 2 diabetes and are early risk factors of AD (Alzheimers disease). An essential feature of AD pathology is the presence of BACE1 (β-site amyloid precursor protein-cleaving enzyme 1), which regulates production of toxic amyloid peptides. However, whether BACE1 also plays a role in glucose homoeostasis is presently unknown. We have used transgenic mice to analyse the effects of loss of BACE1 on body weight, and lipid and glucose homoeostasis. BACE1−/− mice are lean, with decreased adiposity, higher energy expenditure, and improved glucose disposal and peripheral insulin sensitivity than wild-type littermates. BACE1−/− mice are also protected from diet-induced obesity. BACE1-deficient skeletal muscle and liver exhibit improved insulin sensitivity. In a skeletal muscle cell line, BACE1 inhibition increased glucose uptake and enhanced insulin sensitivity. The loss of BACE1 is associated with increased levels of UCP1 (uncoupling protein 1) in BAT (brown adipose tissue) and UCP2 and UCP3 mRNA in skeletal muscle, indicative of increased uncoupled respiration and metabolic inefficiency. Thus BACE1 levels may play a critical role in glucose and lipid homoeostasis in conditions of chronic nutrient excess. Therefore strategies that ameliorate BACE1 activity may be important novel approaches for the treatment of diabetes.


PLOS ONE | 2010

A Limited Role for PI(3,4,5)P3 Regulation in Controlling Skeletal Muscle Mass in Response to Resistance Exercise

D. Lee Hamilton; Andrew Philp; Matthew G. MacKenzie; Keith Baar

Background Since activation of the PI3K/(protein kinase B; PKB/akt) pathway has been shown to alter muscle mass and growth, the aim of this study was to determine whether resistance exercise increased insulin like growth factor (IGF) I/phosphoinositide 3-kinase (PI3K) signalling and whether altering PI(3,4,5)P3 metabolism genetically would increase load induced muscle growth. Methodology/Principal Findings Acute and chronic resistance exercise in wild type and muscle specific PTEN knockout mice were used to address the role of PI(3,4,5)P3 regulation in the development of skeletal muscle hypertrophy. Acute resistance exercise did not increase either IGF-1 receptor phosphorylation or IRS1/2 associated p85. Since insulin/IGF signalling to PI3K was unchanged, we next sought to determine whether inactivation of PTEN played a role in load-induced muscle growth. Muscle specific knockout of PTEN resulted in small but significant increases in heart (PTEN+/+  = 5.00±0.02 mg/g, PTEN−/−  = 5.50±0.09 mg/g), and TA (PTEN+/+  = 1.74±0.04 mg/g, PTEN−/−  = 1.89 ±0.03) muscle mass, while the GTN, SOL, EDL and PLN remain unchanged. Following ablation, hypertrophy of the PLN, SOL or EDL muscles was similar between PTEN−/− and PTEN+/+ animals. Even though there were some changes in overload-induced PKB and S6K1 phosphorylation, 1 hr following acute resistance exercise there was no difference in the phosphorylation state of S6K1 Thr389 between genotypes. Conclusions/Significance These data suggest that physiological loading does not lead to the enhanced activation of the PI3K/PKB/mTORC1 axis and that neither PI3K activation nor PTEN, and by extension PI(3,4,5)P3 levels, play a significant role in adult skeletal muscle growth.


Journal of Applied Physiology | 2013

Six weeks of a polarized training-intensity distribution leads to greater physiological and performance adaptations than a threshold model in trained cyclists

Craig M. Neal; Angus M. Hunter; Lorraine Brennan; Aifric O'Sullivan; D. Lee Hamilton; Giuseppe DeVito; Stuart D.R. Galloway

This study was undertaken to investigate physiological adaptation with two endurance-training periods differing in intensity distribution. In a randomized crossover fashion, separated by 4 wk of detraining, 12 male cyclists completed two 6-wk training periods: 1) a polarized model [6.4 (±1.4 SD) h/wk; 80%, 0%, and 20% of training time in low-, moderate-, and high-intensity zones, respectively]; and 2) a threshold model [7.5 (±2.0 SD) h/wk; 57%, 43%, and 0% training-intensity distribution]. Before and after each training period, following 2 days of diet and exercise control, fasted skeletal muscle biopsies were obtained for mitochondrial enzyme activity and monocarboxylate transporter (MCT) 1 and 4 expression, and morning first-void urine samples were collected for NMR spectroscopy-based metabolomics analysis. Endurance performance (40-km time trial), incremental exercise, peak power output (PPO), and high-intensity exercise capacity (95% maximal work rate to exhaustion) were also assessed. Endurance performance, PPOs, lactate threshold (LT), MCT4, and high-intensity exercise capacity all increased over both training periods. Improvements were greater following polarized rather than threshold for PPO [mean (±SE) change of 8 (±2)% vs. 3 (±1)%, P < 0.05], LT [9 (±3)% vs. 2 (±4)%, P < 0.05], and high-intensity exercise capacity [85 (±14)% vs. 37 (±14)%, P < 0.05]. No changes in mitochondrial enzyme activities or MCT1 were observed following training. A significant multilevel, partial least squares-discriminant analysis model was obtained for the threshold model but not the polarized model in the metabolomics analysis. A polarized training distribution results in greater systemic adaptation over 6 wk in already well-trained cyclists. Markers of muscle metabolic adaptation are largely unchanged, but metabolomics markers suggest different cellular metabolic stress that requires further investigation.


Prostaglandins Leukotrienes and Essential Fatty Acids | 2014

Temporal changes in human skeletal muscle and blood lipid composition with fish oil supplementation

Chris McGlory; Stuart D.R. Galloway; D. Lee Hamilton; Craig McClintock; Leigh Breen; James R. Dick; J.G. Bell; Kevin D. Tipton

The aim of this study was to examine changes in the lipid profile of red blood cells and muscle tissue along with the expression of anabolic signalling proteins in human skeletal muscle. Following a 2-week control period, 10 healthy male participants consumed 5 g d(-1) of fish oil (FO) for 4 weeks. Muscle biopsies and venous blood samples were collected in the fasted state 2 weeks prior (W-2) and immediately before (W0) the initiation of FO supplementation for internal control. Muscle biopsies and venous blood samples were again obtained at week 1 (W1), 2 (W2) and 4 (W4) during FO supplementation for assessment of changes in lipid composition and expression of anabolic signalling proteins. There was no change in the composition of any lipid class between W-2 and W0 confirming control. Following FO supplementation n-3 polyunsaturated fatty acid (n-3 PUFA) muscle lipid composition was increased from W0 to W2 and continued to rise at W4. n-3 PUFA blood lipid composition was increased from W0 to W1 and remained elevated for the remaining time points. Total protein content of focal adhesion kinase (FAK) increased from W0 to W4 whereas total mechanistic target of rapamycin (mTOR) was increased from W0 at W1 with no further significant increases at W2 and W4. These data show that FO supplementation results in discordant changes in the n-3 PUFA composition of skeletal muscle compared to blood that is associated with increases in total FAK content.


Physiological Reports | 2016

The response of muscle protein synthesis following whole-body resistance exercise is greater following 40 g than 20 g of ingested whey protein

Lindsay S. Macnaughton; Sophie L. Wardle; Oliver C. Witard; Chris McGlory; D. Lee Hamilton; Stewart Jeromson; Clare E. Lawrence; Gareth A. Wallis; Kevin D. Tipton

The currently accepted amount of protein required to achieve maximal stimulation of myofibrillar protein synthesis (MPS) following resistance exercise is 20–25 g. However, the influence of lean body mass (LBM) on the response of MPS to protein ingestion is unclear. Our aim was to assess the influence of LBM, both total and the amount activated during exercise, on the maximal response of MPS to ingestion of 20 or 40 g of whey protein following a bout of whole‐body resistance exercise. Resistance‐trained males were assigned to a group with lower LBM (≤65 kg; LLBM n = 15) or higher LBM (≥70 kg; HLBM n = 15) and participated in two trials in random order. MPS was measured with the infusion of 13C6‐phenylalanine tracer and collection of muscle biopsies following ingestion of either 20 or 40 g protein during recovery from a single bout of whole‐body resistance exercise. A similar response of MPS during exercise recovery was observed between LBM groups following protein ingestion (20 g – LLBM: 0.048 ± 0.018%·h−1; HLBM: 0.051 ± 0.014%·h−1; 40 g – LLBM: 0.059 ± 0.021%·h−1; HLBM: 0.059 ± 0.012%·h−1). Overall (groups combined), MPS was stimulated to a greater extent following ingestion of 40 g (0.059 ± 0.020%·h−1) compared with 20 g (0.049 ± 0.020%·h−1; P = 0.005) of protein. Our data indicate that ingestion of 40 g whey protein following whole‐body resistance exercise stimulates a greater MPS response than 20 g in young resistance‐trained men. However, with the current doses, the total amount of LBM does not seem to influence the response.


The Journal of Physiology | 2015

Rapamycin does not prevent increases in myofibrillar or mitochondrial protein synthesis following endurance exercise

Andrew Philp; Simon Schenk; Joaquín Pérez-Schindler; D. Lee Hamilton; Leigh Breen; Erin Laverone; Stewart Jeromson; Stuart M. Phillips; Keith Baar

Previous studies have shown that endurance exercise increases myofibrillar (MyoPS) and mitochondrial (MitoPS) protein synthesis in skeletal muscle. The mechanistic target of rapamycin (mTOR) is considered to be a key intracellular nutrient‐sensing protein complex, which activates MyoPS in response to anabolic stimuli. Little is known regarding the regulation of MyoPS and MitoPS in response to endurance exercise. In the present study, we show that MyoPS and MitoPS increase in skeletal muscle following endurance exercise, despite suppression of mTORC1 during the post‐exercise recovery period. Our data suggests that mTORC1 independent processes regulate both MyoPS and MitoPS following acute endurance exercise.


American Journal of Physiology-endocrinology and Metabolism | 2015

Resistance exercise-induced S6K1 kinase activity is not inhibited in human skeletal muscle despite prior activation of AMPK by high-intensity interval cycling

William Apró; Marcus Moberg; D. Lee Hamilton; Björn Ekblom; Gerrit van Hall; Hans-Christer Holmberg; Eva Blomstrand

Combining endurance and strength training in the same session has been reported to reduce the anabolic response to the latter form of exercise. The underlying mechanism, based primarily on results from rodent muscle, is proposed to involve AMPK-dependent inhibition of mTORC1 signaling. This hypothesis was tested in eight trained male subjects who in randomized order performed either resistance exercise only (R) or interval cycling followed by resistance exercise (ER). Biopsies taken from the vastus lateralis before and after endurance exercise and repeatedly after resistance exercise were assessed for glycogen content, kinase activity, protein phosphorylation, and gene expression. Mixed muscle fractional synthetic rate was measured at rest and during 3 h of recovery using the stable isotope technique. In ER, AMPK activity was elevated immediately after both endurance and resistance exercise (∼90%, P < 0.05) but was unchanged in R. Thr(389) phosphorylation of S6K1 was increased severalfold immediately after exercise (P < 0.05) in both trials and increased further throughout recovery. After 90 and 180 min recovery, S6K1 activity was elevated (∼55 and ∼110%, respectively, P < 0.05) and eukaryotic elongation factor 2 phosphorylation was reduced (∼55%, P < 0.05) with no difference between trials. In contrast, markers for protein catabolism were differently influenced by the two modes of exercise; ER induced a significant increase in gene and protein expression of MuRF1 (P < 0.05), which was not observed following R exercise only. In conclusion, cycling-induced elevation in AMPK activity does not inhibit mTOR complex 1 signaling after subsequent resistance exercise but may instead interfere with the hypertrophic response by influencing key components in protein breakdown.

Collaboration


Dive into the D. Lee Hamilton's collaboration.

Top Co-Authors

Avatar

Andrew Philp

University of California

View shared research outputs
Top Co-Authors

Avatar

Keith Baar

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Philp

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge