Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gareth A. Wallis is active.

Publication


Featured researches published by Gareth A. Wallis.


Medicine and Science in Sports and Exercise | 2005

Oxidation of combined ingestion of maltodextrins and fructose during exercise

Gareth A. Wallis; David S. Rowlands; Christopher S. Shaw; Roy L. P. G. Jentjens; Asker E. Jeukendrup

PURPOSE To determine whether combined ingestion of maltodextrin and fructose during 150 min of cycling exercise would lead to exogenous carbohydrate oxidation rates higher than 1.1 g.min. METHODS Eight trained cyclists VO2max: 64.1 +/- 3.1 mL.kg.min) performed three exercise trials in a random order. Each trial consisted of 150 min cycling at 55% maximum power output (64.2+/-3.5% VO2max) while subjects received a solution providing either 1.8 g.min of maltodextrin (MD), 1.2 g.min of maltodextrin + 0.6 g.min of fructose (MD+F), or plain water. To quantify exogenous carbohydrate oxidation, corn-derived MD and F were used, which have a high natural abundance of C. RESULTS Peak exogenous carbohydrate oxidation (last 30 min of exercise) rates were approximately 40% higher with combined MD+F ingestion compared with MD only ingestion (1.50+/-0.07 and 1.06+/-0.08 g.min, respectively, P<0.05). Furthermore, the average exogenous carbohydrate oxidation rate during the last 90 min of exercise was higher with combined MD+F ingestion compared with MD alone (1.38+/-0.06 and 0.96+/-0.07 g.min, respectively, P<0.05). CONCLUSIONS The present study demonstrates that with ingestion of large amounts of maltodextrin and fructose during cycling exercise, exogenous carbohydrate oxidation can reach peak values of approximately 1.5 g.min, and this is markedly higher than oxidation rates from ingesting maltodextrin alone.


Medicine and Science in Sports and Exercise | 2012

Protein ingestion before sleep improves postexercise overnight recovery.

Peter T. Res; Bart B. L. Groen; Bart Pennings; Milou Beelen; Gareth A. Wallis; Annemie P. Gijsen; Joan M. G. Senden; Luc J. C. van Loon

INTRODUCTION The role of nutrition in modulating postexercise overnight recovery remains to be elucidated. We assessed the effect of protein ingestion immediately before sleep on digestion and absorption kinetics and protein metabolism during overnight recovery from a single bout of resistance-type exercise. METHODS Sixteen healthy young males performed a single bout of resistance-type exercise in the evening (2000 h) after a full day of dietary standardization. All subjects were provided with appropriate recovery nutrition (20 g of protein, 60 g of CHO) immediately after exercise (2100 h). Thereafter, 30 min before sleep (2330 h), subjects ingested a beverage with (PRO) or without (PLA) 40 g of specifically produced intrinsically [1-C]phenylalanine-labeled casein protein. Continuous intravenous infusions with [ring-H5]phenylalanine and [ring-H2]tyrosine were applied with blood and muscle samples collected to assess protein digestion and absorption kinetics, whole-body protein balance and mixed muscle protein synthesis rates throughout the night (7.5 h). RESULTS During sleep, casein protein was effectively digested and absorbed resulting in a rapid rise in circulating amino acid levels, which were sustained throughout the remainder of the night. Protein ingestion before sleep increased whole-body protein synthesis rates (311 ± 8 vs 246 ± 9 μmol·kg per 7.5 h) and improved net protein balance (61 ± 5 vs -11 ± 6 μmol·kg per 7.5 h) in the PRO vs the PLA experiment (P < 0.01). Mixed muscle protein synthesis rates were ∼22% higher in the PRO vs the PLA experiment, which reached borderline significance (0.059%·h ± 0.005%·h vs 0.048%·h ± 0.004%·h, P = 0.05). CONCLUSIONS This is the first study to show that protein ingested immediately before sleep is effectively digested and absorbed, thereby stimulating muscle protein synthesis and improving whole-body protein balance during postexercise overnight recovery.


Medicine and Science in Sports and Exercise | 2009

Exogenous CHO oxidation with glucose plus fructose intake during exercise.

Carl J. Hulston; Gareth A. Wallis; Asker E. Jeukendrup

PURPOSE The purpose of the present study was to determine whether combined ingestion of moderate amounts of glucose plus fructose would result in higher rates of exogenous CHO oxidation compared with an isocaloric amount of glucose alone. METHODS Seven endurance-trained male cyclists performed three experimental trials consisting of 150 min of cycling at 65% VO(2max). Subjects ingested a CHO solution providing glucose (GLU) at an average rate of 0.8 g min(-1), glucose (0.54 g min(-1)) plus fructose (0.26 g min(-1)) (GLU + FRU), or plain water (WAT) during exercise. To quantify exogenous CHO oxidation, we prepared CHO solutions using corn-derived GLU and FRU, with a high natural abundance of 13C. RESULTS Peak exogenous CHO oxidation rates were not significantly different between GLU and GLU + FRU (0.60 +/- 0.06 and 0.57 +/- 0.06 g min(-1), respectively). Furthermore, average exogenous CHO oxidation rates during the final 90 min of exercise were not significantly different between GLU and GLU + FRU (0.58 +/- 0.05 and 0.56 +/- 0.06 g min(-1), respectively). CONCLUSION The present study demonstrates that ingesting moderate amounts of glucose plus fructose does not increase exogenous CHO oxidation above that of an isocaloric amount of glucose alone.


Physiological Reports | 2016

The response of muscle protein synthesis following whole-body resistance exercise is greater following 40 g than 20 g of ingested whey protein

Lindsay S. Macnaughton; Sophie L. Wardle; Oliver C. Witard; Chris McGlory; D. Lee Hamilton; Stewart Jeromson; Clare E. Lawrence; Gareth A. Wallis; Kevin D. Tipton

The currently accepted amount of protein required to achieve maximal stimulation of myofibrillar protein synthesis (MPS) following resistance exercise is 20–25 g. However, the influence of lean body mass (LBM) on the response of MPS to protein ingestion is unclear. Our aim was to assess the influence of LBM, both total and the amount activated during exercise, on the maximal response of MPS to ingestion of 20 or 40 g of whey protein following a bout of whole‐body resistance exercise. Resistance‐trained males were assigned to a group with lower LBM (≤65 kg; LLBM n = 15) or higher LBM (≥70 kg; HLBM n = 15) and participated in two trials in random order. MPS was measured with the infusion of 13C6‐phenylalanine tracer and collection of muscle biopsies following ingestion of either 20 or 40 g protein during recovery from a single bout of whole‐body resistance exercise. A similar response of MPS during exercise recovery was observed between LBM groups following protein ingestion (20 g – LLBM: 0.048 ± 0.018%·h−1; HLBM: 0.051 ± 0.014%·h−1; 40 g – LLBM: 0.059 ± 0.021%·h−1; HLBM: 0.059 ± 0.012%·h−1). Overall (groups combined), MPS was stimulated to a greater extent following ingestion of 40 g (0.059 ± 0.020%·h−1) compared with 20 g (0.049 ± 0.020%·h−1; P = 0.005) of protein. Our data indicate that ingestion of 40 g whey protein following whole‐body resistance exercise stimulates a greater MPS response than 20 g in young resistance‐trained men. However, with the current doses, the total amount of LBM does not seem to influence the response.


Medicine and Science in Sports and Exercise | 2008

Postexercise Muscle Glycogen Synthesis with Combined Glucose and Fructose Ingestion

Gareth A. Wallis; Carl J. Hulston; Christopher H. Mann; Helen P. Roper; Kevin D. Tipton; Asker E. Jeukendrup

PURPOSE To evaluate the efficacy of using combined glucose and fructose (GF) ingestion as a means to stimulate short-term (4 h) postexercise muscle glycogen synthesis compared to glucose only (G). METHODS On two separate occasions, six endurance-trained men performed an exhaustive glycogen-depleting exercise bout followed by a 4-h recovery period. Muscle biopsy samples were obtained from the vastus lateralis muscle at 0, 1, and 4 h after exercise. Subjects ingested carbohydrate solutions containing G (90 g x h(-1)) or GF (G = 60 g x h(-1); F = 30 g x h(-1)) commencing immediately after exercise and every 30 min thereafter. RESULTS Immediate postexercise muscle glycogen concentrations were similar in both trials (G = 128 +/- 25 mmol x kg(-1) dry muscle (dm) vs GF = 112 +/- 16 mmol x kg(-1) dm; P > 0.05). Total glycogen storage during the 4-h recovery period was 176 +/- 33 and 155 +/- 31 mmol x kg(-1) dm for G and GF, respectively (G vs GF, P > 0.05). Hence, mean muscle glycogen synthesis rates during the 4-h recovery period did not differ between the two conditions (G = 44 +/- 8 mmol x kg(-1) dm x h(-1) vs GF = 39 +/- 8 mmol x kg(-1) dm x h(-1), P > 0.05). Plasma glucose and serum insulin responses during the recovery period were similar in both conditions, although plasma lactate concentrations were significantly elevated during GF compared to G (by approximately 0.8 mmol x L(-1), P < 0.05). CONCLUSIONS Glucose and glucose/fructose (2:1 ratio) solutions, ingested at a rate of 90 g x h(-1), are equally effective at restoring muscle glycogen in exercised muscles during the recovery from exhaustive exercise.


Diabetes, Obesity and Metabolism | 2017

The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro.

Attilio Pingitore; Edward S. Chambers; Tom Hill; Inmaculada Ruz Maldonado; Bo Liu; Gavin A. Bewick; Douglas J. Morrison; Tom Preston; Gareth A. Wallis; Catriona Tedford; Ramón Castañera González; Guo Cai Huang; Pratik Choudhary; Gary Frost; Shanta J. Persaud

Diet‐derived short chain fatty acids (SCFAs) improve glucose homeostasis in vivo, but the role of individual SCFAs and their mechanisms of action have not been defined. This study evaluated the effects of increasing colonic delivery of the SCFA propionate on β‐cell function in humans and the direct effects of propionate on isolated human islets in vitro.


Metabolism-clinical and Experimental | 2009

Effects of Endurance Training on Cardiorespiratory Fitness and Substrate Partitioning in Postmenopausal Women

Zinta A. Zarins; Gareth A. Wallis; Nastaran Faghihnia; Matthew L. Johnson; Jill A. Fattor; Michael A. Horning; George A. Brooks

We examined the effect of endurance training on energy substrate partitioning during rest and exercise in postmenopausal women. Ten healthy sedentary (55 +/- 1 years old) subjects completed 12 weeks of endurance exercise training on a cycle ergometer (5 d/wk, 1 h/d, 65% peak oxygen consumption [Vo(2)peak]). Whole-body energy substrate oxidation was determined by indirect calorimetry during 90 minutes of rest and 60 minutes of cycle ergometer exercise. Subjects were studied at 65% Vo(2)peak before training and after training at the same absolute exercise intensity (same absolute workload as 65% of pretraining Vo(2)peak) and same relative exercise intensity (65% of posttraining Vo(2)peak). After training, Vo(2)peak increased by 16.3% +/- 3.9% and resting heart rate decreased by 4 beats per minute (P < .05). During exercise at same absolute intensity, mean arterial pressure decreased by 8 mm Hg (P < .05), heart rate decreased by 19 beats per minute (P < .05), energy derived from carbohydrate decreased by 9.6%, and the energy derived from lipid increased by 9.2% (P < .05). Lactate concentration was lower at the same absolute and relative exercise intensities (P < .05). Changes in substrate partitioning during exercise were accomplished without changes in dietary composition, body weight, or body composition. We conclude that endurance training in healthy postmenopausal women who remain in energy balance results in many of the classic cardiopulmonary training effects, decreases the reliance on carbohydrate, and increases lipid oxidation during a given submaximal exercise task without a reduction in body weight.


Annual Review of Food Science and Technology - (new in 2010) | 2014

Designing Food Structures for Nutrition and Health Benefits

J.E. Norton; Gareth A. Wallis; F. Spyropoulos; Peter J. Lillford; Ian T. Norton

In addition to providing specific sensory properties (e.g., flavor or textures), there is a need to produce foods that also provide functionality within the gastrointestinal (GI) tract, over and above simple nutrition. As such, there is a need to understand the physical and chemical processes occurring in the mouth, stomach, small intestine, and large intestine, in addition to the food structure-physiology interactions. In vivo techniques and in vitro models have allowed us to study and simulate these processes, which aids us in the design of food microstructures that can provide functionality within the human body. Furthermore, it is important to be aware of the health or nutritional needs of different groups of consumers when designing food structures, to provide targeted functionality. Examples of three groups of consumers (elderly, obese, and athletes) are given to demonstrate their differing nutritional requirements and the formulation engineering approaches that can be utilized to improve the health of these individuals. Eating is a pleasurable process, but foods of the future will be required to provide much more in terms of functionality for health and nutrition.


Journal of Applied Physiology | 2015

Maximal fat oxidation during exercise is positively associated with 24-hour fat oxidation and insulin sensitivity in young, healthy men

Scott L. Robinson; John G. Hattersley; Gary Frost; Edward S. Chambers; Gareth A. Wallis

Disturbances in fat oxidation have been associated with an increased risk of obesity and metabolic disorders such as insulin resistance. There is large intersubject variability in the capacity to oxidize fat when a person is physically active, although the significance of this for metabolic health is unclear. We investigated whether the maximal capacity to oxidize fat during exercise is related to 24-h fat oxidation and insulin sensitivity. Maximal fat oxidation (MFO; indirect calorimetry during incremental exercise) and insulin sensitivity (Quantitative Insulin Sensitivity Check Index) were measured in 53 young, healthy men (age 24 ± 7 yr, V̇o2max 52 ± 6 ml·kg(-1)·min(-1)). Fat oxidation over 24 h (24-h FO; indirect calorimetry) was assessed in 16 young, healthy men (age 26 ± 8 yr, V̇o2max 52 ± 6 ml·kg(-1)·min(-1)) during a 36-h stay in a whole-room respiration chamber. MFO (g/min) was positively correlated with 24-h FO (g/day) (R = 0.65, P = 0.003; R = 0.46, P = 0.041 when controlled for V̇o2max [l/min]), 24-h percent energy from FO (R = 0.58, P = 0.009), and insulin sensitivity (R = 0.33, P = 0.007). MFO (g/min) was negatively correlated with 24-h fat balance (g/day) (R = -0.51, P = 0.021) but not significantly correlated with 24-h respiratory quotient (R = -0.29, P = 0.142). Although additional investigations are needed, our data showing positive associations between MFO and 24-h FO, and between MFO and insulin sensitivity in healthy young men suggests that a high capacity to oxidize fat while one is physically active could be advantageous for the maintenance of metabolic health.


International Journal of Sports Medicine | 2011

Pre-Race Dietary Carbohydrate Intake Can Independently Influence Sub-Elite Marathon Running Performance

Greg Atkinson; Chloe E. Taylor; Nicholas Morgan; L. R Ormond; Gareth A. Wallis

We examined whether selected anthropometric and nutritional factors influenced field-based marathon running performance. An internet-based data collection tool allowed competitors in the 2009 London Marathon (n=257, mean ± SD age: 39 ± 8 years, finish time: 273.8 ± 59.5 min) to record a range of anthropometric, training and nutritional predictors. Multivariate statistical methods were used to quantify the change in running speed mediated by a unit change in each predictor via the 95% confidence interval for each covariate-controlled regression slope ( B). Gender ( B=1.22 to 1.95 km/h), body mass index ( B=-0.14 to -0.27 km/h), training distance ( B=0.01 to 0.04 km/h) and the amount of carbohydrate consumed the day before the race ( B=0.08 to 0.26 km/h) were significant predictors, collectively accounting for 56% of the inter-individual variability in running speed (P<0.0005). Further covariate-adjusted analysis revealed that those competitors who consumed carbohydrate the day before the race at a quantity of >7 g/kg body mass had significantly faster overall race speeds (P=0.01) and maintained their running speed during the race to a greater extent than with those who consumed <7 g/kg body mass (P=0.02). We conclude that, in addition to gender, body size and training, pre-race day carbohydrate intake can significantly and independently influence marathon running performance.

Collaboration


Dive into the Gareth A. Wallis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jill A. Fattor

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge