D. Lozano
Complutense University of Madrid
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D. Lozano.
Acta Biomaterialia | 2015
F.J. Martínez-Vázquez; M.V. Cabañas; Juan L. Paris; D. Lozano; María Vallet-Regí
Porous 3-D scaffolds consisting of gelatine and Si-doped hydroxyapatite were fabricated at room temperature by rapid prototyping. Microscopic characterization revealed a highly homogeneous structure, showing the pre-designed porosity (macroporosity) and a lesser in-rod porosity (microporosity). The mechanical properties of such scaffolds are close to those of trabecular bone of the same density. The biological behavior of these hybrid scaffolds is greater than that of pure ceramic scaffolds without gelatine, increasing pre-osteoblastic MC3T3-E1 cell differentiation (matrix mineralization and gene expression). Since the fabrication process of these structures was carried out at mild conditions, an antibiotic (vancomycin) was incorporated in the slurry before the extrusion of the structures. The release profile of this antibiotic was measured in phosphate-buffered saline solution by high-performance liquid chromatography and was adjusted to a first-order release kinetics. Vancomycin released from the material was also shown to inhibit bacterial growth in vitro. The implications of these results for bone tissue engineering applications are discussed.
FEBS Letters | 2010
Sergio Portal-Núñez; D. Lozano; L. Fernández de Castro; A.R. de Gortázar; X. Nogués; P. Esbrit
Type 1 diabetes mellitus (T1D) is associated with bone loss. Given that the Wnt/β‐catenin pathway is a major regulator of bone accrual, we assessed this pathway in mice with streptozotozin‐induced T1D. In diabetic mouse long bones, we found alterations favouring the suppression of this pathway by using PCR arrays and β‐catenin immunostaining. Downregulation of sclerostin, an inhibitor of this pathway, also occurred, and related to increased osteocyte apoptosis. Our data show that both N‐ and C‐terminal parathyroid hormone‐related peptide fragments might exert osteogenic effects in this setting by targeting several genes of this pathway and increasing β‐catenin in osteoblastic cells.
RSC Advances | 2016
Marina Martínez-Carmona; D. Lozano; Montserrat Colilla; María Vallet-Regí
Topotecan (TOP), a water-soluble derivative of camptothecin, is a potent antitumor agent that is receiving growing attention for the treatment of several types of cancer. However, one of the major constraints in the clinical use of this drug is its inactivation at the physiological pH of 7.4. Mesoporous silica nanoparticles (MSNs) constitute promising nanocarriers to circumvent this issue. Herein TOP has been encapsulated into MSNs and the nanosystem has been provided with selectivity towards tumor cells, which permits releasing the active form of the molecule at the acidic cell compartments (endo/lysosomes; pH ≤ 5.5) following nanoparticle internalization. For this purpose, MSNs have been coated with a multifunctional gelatin shell that: (i) protects TOP from hydrolysis and prevents its premature release; (ii) acts as a pH-sensitive layer; and (iii) provides multiple anchoring points for the grafting of targeting ligands, such as folic acid (FA), for selective internalization in tumor cells. In vitro tests demonstrate that cancer cells that overexpress membrane cell surface markers with affinity towards FA, internalize a higher percentage of nanoparticles than healthy cells, which do not overexpress such markers. Moreover, the nanosystems are efficient at killing tumor cells, whereas they do not decrease the viability of normal cells. In contrast, free TOP failed to kill both cell lines, which can be ascribed to the inactivation of the drug. This novel nanodevice constitutes a step forward toward the design of novel weapons to fight against cancer.
PLOS ONE | 2014
Lourdes Rodriguez-de la Rosa; Ana López-Herradón; Sergio Portal-Núñez; Silvia Murillo-Cuesta; D. Lozano; Rafael Cediel; Isabel Varela-Nieto; Pedro Esbrit
Insulin-like growth factor-I (IGF-I) deficiency causes growth delay, and IGF-I has been shown to partially mediate bone anabolism by parathyroid hormone (PTH). PTH-related protein (PTHrP) is abundant in bone, and has osteogenic features by poorly defined mechanisms. We here examined the capacity of PTHrP (1–36) and PTHrP (107–111) (osteostatin) to reverse the skeletal alterations associated with IGF-I deficiency. Igf1-null mice and their wild type littermates were treated with each PTHrP peptide (80 µg/Kg/every other day/2 weeks; 2 males and 4 females for each genotype) or saline vehicle (3 males and 3 females for each genotype). We found that treatment with either PTHrP peptide ameliorated trabecular structure in the femur in both genotypes. However, these peptides were ineffective in normalizing the altered cortical structure at this bone site in Igf1-null mice. An aberrant gene expression of factors associated with osteoblast differentiation and function, namely runx2, osteoprotegerin/receptor activator of NF-κB ligand ratio, Wnt3a , cyclin D1, connexin 43, catalase and Gadd45, as well as in osteocyte sclerostin, was found in the long bones of Igf1-null mice. These mice also displayed a lower amount of trabecular osteoblasts and osteoclasts in the tibial metaphysis than those in wild type mice. These alterations in Igf1-null mice were only partially corrected by each PTHrP peptide treatment. The skeletal expression of Igf2, Igf1 receptor and Irs2 was increased in Igf1-null mice, and this compensatory profile was further improved by treatment with each PTHrP peptide related to ERK1/2 and FoxM1 activation. In vitro, PTHrP (1–36) and osteostatin were effective in promoting bone marrow stromal cell mineralization in normal mice but not in IGF-I-deficient mice. Collectively, these findings indicate that PTHrP (1–36) and osteostatin can exert several osteogenic actions even in the absence of IGF-I in the mouse bone.
Journal of Biomedical Materials Research Part A | 2015
D. Lozano; J.M. Hernández-López; Pedro Esbrit; M.A. Arenas; Enrique Gómez-Barrena; Juan J. de Damborenea; Jaime Esteban; Concepción Pérez-Jorge; Ramón Pérez-Tanoira; Ana Conde
The aim of this study was to evaluate the proliferation and mineralization ability of mouse osteoblastic MC3T3-E1 cells on F-containing TiO2 films with different morphology and nanostructure that previously confirmed antibacterial properties. F-containing TiO2 films were fabricated by anodizing Ti-6Al-4V alloy ELI -grade 23. By using a mixture of H2SO4/HF acid at 20 V for 5 and 60 min, a TiO2 film grows with nanoporous (NP) and nanotubular (NT) features, characterized with a pore diameter of 20 and 100 nm, respectively. Fluoride-TiO2 barrier films (FBL) were produced in 1M NH4H2PO4/0.15M NH4F solution at constant voltage controlled at 20 V for 120 min. The amount of F incorporated in the nanostructured oxide films was 6 at % and of 4 at %, for the NP and NT, respectively, while for the FBL film was 12 at %. MC3T3-E1 cells exhibited different behavior when seeded and grown onto these surfaces. Thus, F-doped TiO2 films with NP structures increased proliferation as well as osteogenic gene expression and the mineralization capacity of these osteoblastic cells. These results confirm that anodizing process is suitable to fabricate multifunctional surfaces on Ti-6Al-4V alloy with improved not only antibacterial but also osteogenic properties useful for bone fixation of prosthetic devices
Acta Biomaterialia | 2014
D. Lozano; Sandra Sánchez-Salcedo; Sergio Portal-Núñez; M. Vila; Ana López-Herradón; Juan Antonio Ardura; Francisca Mulero; Enrique Gómez-Barrena; María Vallet-Regí; Pedro Esbrit
Biopolymer-coated nanocrystalline hydroxyapatite (HA) made as macroporous foams which are degradable and flexible are promising candidates as orthopaedic implants. The C-terminal (107-111) epitope of parathyroid hormone-related protein (PTHrP) exhibits osteogenic properties. The main aim of this study was to evaluate whether PTHrP (107-111) loading into gelatin-glutaraldehyde biopolymer-coated HA (HAGlu) scaffolds would produce an optimal biomaterial for tissue engineering applications. HAGlu scaffolds with and without PTHrP (107-111) were implanted into a cavitary defect performed in both distal tibial metaphysis of adult rats. Animals were sacrificed after 4 weeks for histological, microcomputerized tomography and gene expression analysis of the callus. At this time, bone healing occurred only in the presence of PTHrP (107-111)-containing HAGlu implant, related to an increase in bone volume/tissue volume and trabecular thickness, cortical thickness and gene expression of osteocalcin and vascular cell adhesion molecule 1, but a decreased gene expression of Wnt inhibitors, SOST and dickkopf homolog 1. The autonomous osteogenic effect of the PTHrP (107-111)-loaded HAGlu scaffolds was confirmed in mouse and human osteoblastic cell cultures. Our findings demonstrate the advantage of loading PTHrP (107-111) into degradable HAGlu scaffolds for achieving an optimal biomaterial that is promising for low load bearing clinical applications.
Journal of Biomedical Materials Research Part A | 2016
Juan Antonio Ardura; Sergio Portal-Núñez; D. Lozano; Irene Gutiérrez-Rojas; Sandra Sánchez-Salcedo; Ana López-Herradón; Francisca Mulero; María L. Villanueva‐Peñacarrillo; María Vallet-Regí; Pedro Esbrit
Diabetes mellitus (DM) and aging are associated with bone fragility and increased fracture risk. Both (1-37) N- and (107-111) C-terminal parathyroid hormone-related protein (PTHrP) exhibit osteogenic properties. We here aimed to evaluate and compare the efficacy of either PTHrP (1-37) or PTHrP (107-111) loaded into gelatin-glutaraldehyde-coated hydroxyapatite (HA-Gel) foams to improve bone repair of a transcortical tibial defect in aging rats with or without DM, induced by streptozotocin injection at birth. Diabetic old rats showed bone structural deterioration compared to their age-matched controls. Histological and μ-computerized tomography studies showed incomplete bone repair at 4 weeks after implantation of unloaded Ha-Gel foams in the transcortical tibial defects, mainly in old rats with DM. However, enhanced defect healing, as shown by an increase of bone volume/tissue volume and trabecular and cortical thickness and decreased trabecular separation, occurred in the presence of either PTHrP peptide in the implants in old rats with or without DM. This was accompanied by newly formed bone tissue around the osteointegrated HA-Gel implant and increased gene expression of osteocalcin and vascular endothelial growth factor (bone formation and angiogenic markers, respectively), and decreased expression of Sost gene, a negative regulator of bone formation, in the healing bone area. Our findings suggest that local delivery of PTHrP (1-37) or PTHrP (107-111) from a degradable implant is an attractive strategy to improve bone regeneration in aged and diabetic subjects.
RSC Advances | 2017
M. Gisbert-Garzaran; D. Lozano; María Vallet-Regí; Miguel Manzano
A novel pH-sensitive nanocarrier based on mesoporous silica nanoparticles with self-immolative polymers blocking the pore openings is presented. Triggered release by acid pH is demonstrated, together with their in vitro biocompatibility and effective cell internalisation, which makes this new material a promising candidate for future applications in cancer treatment.
Acta Biomaterialia | 2018
Marina Martínez-Carmona; D. Lozano; Montserrat Colilla; María Vallet-Regí
A novel multifunctional nanodevice based in doxorubicin (DOX)-loaded mesoporous silica nanoparticles (MSNs) as nanoplatforms for the assembly of different building blocks has been developed for bone cancer treatment. These building blocks consists of: i) a polyacrylic acid (PAA) capping layer grafted to MSNs via an acid-cleavable acetal linker, to minimize premature cargo release and provide the nanosystem of pH-responsive drug delivery ability; and ii) a targeting ligand, the plant lectin concanavalin A (ConA), able to selectively recognize, bind and internalize owing to certain cell-surface glycans, such as sialic acids (SA), overexpressed in given tumor cells. This multifunctional nanosystem exhibits a noticeable higher internalization degree into human osteosarcoma cells (HOS), overexpressing SA, compared to healthy preosteoblast cells (MC3T3-E1). Moreover, the results indicate that small DOX loading (2.5u202fµgu202fmL-1) leads to almost 100% of osteosarcoma cell death in comparison with healthy bone cells, which significantly preserve their viability. Besides, this nanodevice has a cytotoxicity on tumor cells 8-fold higher than that caused by the free drug. These findings demonstrate that the synergistic combination of different building blocks into a unique nanoplatform increases antitumor effectiveness and decreases toxicity towards normal cells. This line of attack opens up new insights in targeted bone cancer therapy.nnnSTATEMENT OF SIGNIFICANCEnThe development of highly selective and efficient tumor-targeted smart drug delivery nanodevices remains a great challenge in nanomedicine. This work reports the design and optimization of a multifunctional nanosystem based on mesoporous silica nanoparticles (MSNs) featuring selectivity towards human osteosarcoma cells and pH-responsive antitumor drug delivery capability. The novelty and originality of this manuscript relies on proving that the synergistic assembly of different building blocks into a unique nanoplatform increases antitumor effectiveness and decreases toxicity towards healthy cells, which constitutes a new paradigm in targeted bone cancer therapy.
Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2016
Sergio Portal-Núñez; Juan Antonio Ardura; D. Lozano; Oskarina Hernández Bolívar; Ana López-Herradón; Irene Gutiérrez-Rojas; Alexander Proctor; Bram C. J. van der Eerden; Marijke Schreuders-Koedam; Johannes P.T.M. van Leeuwen; María José Alcaraz; Francisca Mulero; Mónica De la Fuente; Pedro Esbrit
In the present study, the possibility that a diabetic (DM) status might worsen age-related bone deterioration was explored in mice. Male CD-1 mice aged 2 (young control group) or 16 months, nondiabetic or made diabetic by streptozotocin injections, were used. DM induced a decrease in bone volume, trabecular number, and eroded surface, and in mineral apposition and bone formation rates, but an increased trabecular separation, in L1-L3 vertebrae of aged mice. Three-point bending and reference point indentation tests showed slight changes pointing to increased frailty and brittleness in the mouse tibia of diabetic old mice. DM was related to a decreased expression of both vascular endothelial growth factor and its receptor 2, which paralleled that of femoral vasculature, and increased expression of the pro-adipogenic gene peroxisome proliferator-activated receptor γ and adipocyte number, without affecting β-catenin pathway in old mouse bone. Concomitant DM in old mice failed to affect total glutathione levels or activity of main anti-oxidative stress enzymes, although xanthine oxidase was slightly increased, in the bone marrow, but increased the senescence marker caveolin-1 gene. In conclusion, DM worsens bone alterations of aged mice, related to decreased bone turnover and bone vasculature and increased senescence, independently of the anti-oxidative stress machinery.