Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. Oro is active.

Publication


Featured researches published by D. Oro.


Journal of Applied Physics | 2014

Experimental observations on the links between surface perturbation parameters and shock-induced mass ejection

S. K. Monfared; D. Oro; M. Grover; J. E. Hammerberg; Brandon LaLone; C. L. Pack; M. M. Schauer; G. D. Stevens; Joseph B. Stone; W. D. Turley; William T. Buttler

We have assembled together our ejecta measurements from explosively shocked tin acquired over a period of about ten years. The tin was cast at 0.99995 purity, and all of the tin targets or samples were shocked to loading pressures of about 27 GPa, allowing meaningful comparisons. The collected data are markedly consistent, and because the total ejected mass scales linearly with the perturbations amplitudes they can be used to estimate how much total Sn mass will be ejected from explosively shocked Sn, at similar loading pressures, based on the surface perturbation parameters of wavelength and amplitude. Most of the data were collected from periodic isosceles shapes that approximate sinusoidal perturbations. Importantly, however, we find that not all periodic perturbations behave similarly. For example, we observed that sawtooth (right triangular) perturbations eject more mass than an isosceles perturbation of similar depth and wavelength, demonstrating that masses ejected from irregular shaped perturbatio...


international conference on plasma science | 2005

Initial electron-beam results from the DARHT-II linear induction accelerator

C.A. Ekdahl; E.O. Abeyta; H. Bender; W. Broste; C. Carlson; L. Caudill; K.C.D. Chan; Yu-Jiuan Chen; Dale A. Dalmas; G. Durtschi; S. Eversole; S. Eylon; W. Fawley; D. Frayer; R. Gallegos; J. Harrison; E. Henestroza; M. Holzscheiter; T. Houck; Thomas P. Hughes; S. Humphries; D. Johnson; J. Johnson; K. Jones; E. Jacquez; B.T. McCuistian; A. Meidinger; N. Montoya; C. Mostrom; K. Moy

The DARHT-II linear-induction accelerator has been successfully operated at 1.2-1.3 kA and 12.5-12.7 MeV to demonstrate the production and acceleration of an electron beam. Beam pulse lengths for these experiments were varied from 0.5 /spl mu/s to 1.2 /spl mu/s full-width half-maximum. A low-frequency inductance-capacitance (LC) oscillation of diode voltage and current resulted in an oscillation of the beam position through interaction with an accidental (static) magnetic dipole in the diode region. There was no growth in the amplitude of this oscillation after propagating more than 44 m through the accelerator, and there was no loss of beam current that could be measured. The results of these initial experiments are presented in this paper.


Journal of Applied Physics | 2014

Second shock ejecta measurements with an explosively driven two-shockwave drive

William T. Buttler; D. Oro; R. T. Olson; F. J. Cherne; J. E. Hammerberg; R. S. Hixson; S. K. Monfared; C. L. Pack; P. A. Rigg; Joseph B. Stone; Guillermo Terrones

We develop and apply an explosively driven two-shockwave tool in material damage experiments on Sn. The two shockwave tool allows the variation of the first shockwave amplitude over range 18.5 to 26.4 GPa, with a time interval variation between the first and second shock of 5 to 7 μs. Simulations imply that the second shock amplitude can be varied as well and we briefly describe how to achieve such a variation. Our interest is to measure ejecta masses from twice shocked metals. In our application of the two-shockwave tool, we observed second shock ejected areal masses of about 4 ± 1 mg/cm2, a value we attribute to unstable Richtmyer-Meshkov impulse phenomena. We also observed an additional mass ejection process caused by the abrupt recompression of the local spallation or cavitation of the twice shocked Sn.


IEEE Transactions on Plasma Science | 2006

Long-pulse beam stability experiments on the DARHT-II linear induction accelerator

C.A. Ekdahl; E.O. Abeyta; P. Aragon; R. Archuleta; R.R. Bartsch; H. Bender; R. Briggs; W. Broste; C. Carlson; K.C.D. Chan; Dale A. Dalmas; S. Eversole; D. Frayer; R. Gallegos; J. Harrison; Thomas P. Hughes; E. Jacquez; D. Johnson; J. Johnson; B.T. McCuistian; N. Montoya; C. Mostrom; S. Nath; D. Oro; L. Rowton; M. Sanchez; R. Scarpetti; M. M. Schauer; M. Schulze; Y. Tang

When completed, the DARHT-II linear induction accelerator (LIA) will produce a 2-kA, 17-MeV electron beam in a 1600-ns flat-top pulse. In initial tests, DARHT-II accelerated beams with current pulse lengths from 500 to 1200 ns full-width at half-maximum (FWHM) with more than 1.2-kA, 12.5-MeV peak current and energy. Experiments have now been done with a /spl sim/1600-ns pulse length. These pulse lengths are all significantly longer than any other multimegaelectronvolt LIA, and they define a novel regime for high-current beam dynamics, especially with regard to beam stability. Although the initial tests demonstrated insignificant beam-breakup instability (BBU), the pulse length was too short to determine whether ion-hose instability would be present toward the end of a long, 1600-ns pulse. The 1600-ns pulse experiments reported here resolved these issues for the long-pulse DARHT-II LIA.


IEEE Transactions on Plasma Science | 2002

Design, fabrication, and operation of a high-energy liner implosion experiment at 16 megamperes

P.J. Turchi; K. Alvey; C. Adams; B.G. Anderson; H. D. Anderson; W. Anderson; E. Armijo; W.L. Atchison; J. Bartos; R.L. Bowers; B. Cameron; Tommy Cavazos; S. Coffey; R. Corrow; James H. Degnan; J. Echave; B. Froggett; D. Gale; F. Garcia; Joyce Ann Guzik; B. Henneke; Randall J. Kanzleiter; G.F. Kiuttu; C. Lebeda; Russell Olson; D. Oro; J. V. Parker; R.E. Peterkin; K. Peterson; R. Pritchett

We discuss the design, fabrication, and operation of a liner implosion system at peak currents of 16 MA. Liners of 1100 aluminum, with initial length, radius, and thickness of 4 cm, 5 cm, and 1 mm, respectively, implode under the action of an axial current, rising in 8 /spl mu/s. Fields on conductor surfaces exceed 0.6 MG. Design and fabrication issues that were successfully addressed include: Pulsed Power-especially current joints at high magnetic fields and the possibility of electrical breakdown at connection of liner cassette insulator to bank insulation; Liner Physics-including the angle needed to maintain current contact between liner and glide-plane/electrode without jetting or buckling; Diagnostics-X-radiography through cassette insulator and outer conductor without shrapnel damage to film.


SHOCK COMPRESSION OF CONDENSED MATTER - 2011: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter | 2012

The study of high-speed surface dynamics using a pulsed proton beam

William T. Buttler; D. Oro; Dean L. Preston; Karnig O. Mikaelian; F. J. Cherne; R. S. Hixson; F. G. Mariam; Christopher L. Morris; Joseph B. Stone; Guillermo Terrones; D. Tupa

We present experimental results supporting physics based ejecta model development, where we assume ejecta form as a special limiting case of a Richtmyer-Meshkov (RM) instability with Atwood number A = -1. We present and use data to test established RM spike and bubble growth rate theory through application of modern laser Doppler velocimetry techniques applied in a novel manner to coincidentally measure bubble and spike velocities from shocked metals. We also explore the link of ejecta formation from a solid material to its plastic flow stress at high-strain rates (


Proceedings of the 2003 Particle Accelerator Conference | 2003

First beam at DARHT-II

C.A. Ekdahl; E.O. Abeyta; L. Caudill; K.C.D. Chan; Dale A. Dalmas; S. Eversole; R. Gallegos; J. Harrison; M. Holzscheiter; J. Johnson; E. Jacquez; B.T. McCuistian; N. Montoya; K. Nielsen; D. Oro; L. Rodriguez; P. Rodriguez; M. Sanchez; M. M. Schauer; D. Simmons; H.V. Smith; J. Studebaker; G. Sullivan; C. Swinney; R. Temple; Y.J. Chen; T. Houck; E. Henestroza; S. Eylon; W. Fawley

107/s) and high strains (700%).


ieee international pulsed power conference | 1999

RANCHERO explosive pulsed power experiments

J.H. Goforth; W.A. Anderson; E.V. Armijo; W.L. Atchison; J.J. Bartos; D.A. Clark; R.D. Day; W.J. Deninger; Rickey J. Faehl; C.M. Fowler; F. Garcia; O.F. Garcia; D.H. Herrera; T.J. Herrera; R. Keinigs; J.C. King; J.R. Lindemuth; E.A. Lopez; E.C. Martinez; D. Martinez; J.A. McGuire; D.V. Morgan; H. Oona; D. Oro; J.V. Parker; R.B. Randolph; R.E. Reinovsky; George Rodriguez; J. Stokes; F.C. Sena

The second axis of the Dual Axis Radiographic HydroTest (DARHT) facility will provide up to four short (< 150 ns) radiation pulses for flash radiography of high-explosive driven implosion experiments. To accomplish this the DARHT-II linear induction accelerator (LIA) will produce a 2-kA electron beam with 18-MeV kinetic energy, constant to within /spl plusmn/ 0.5% for 2-/spl mu/s. A fast kicker will cleave four short pulses out of the 2-/spl mu/s flattop, with the bulk of the beam diverted into a dump. The short pulses will then be transported to the final-focus magnet, and focused onto a tantalum target for conversion to bremsstrahlung pulses for radiography. DARHT-II is a collaborative effort between the Los Alamos, Lawrence Livermore, and Lawrence Berkeley National Laboratories of the University of California.


Journal of Dynamic Behavior of Materials | 2017

Estimation of Metal Strength at Very High Rates Using Free-Surface Richtmyer–Meshkov Instabilities

Michael B. Prime; William T. Buttler; Miles A. Buechler; Nicholas A. Denissen; Mark A. Kenamond; F. G. Mariam; J. I. Martinez; D. Oro; D. W. Schmidt; Joseph B. Stone; D. Tupa; Wendy Vogan-McNeil

The authors are developing the RANCHERO high explosive pulsed power (HEPP) system to power cylindrically imploding solid-density liners for hydrodynamics experiments. Their near-term goal is to conduct experiments in the regime pertinent to the Atlas capacitor bank. That is, they will attempt to implode liners of /spl sim/50 g mass at velocities approaching 15 km/sec. The basic building block of the HEPP system is a coaxial generator with a 304.8 mm diameter stator, and an initial armature diameter of 152 mm. The armature is expanded by a high explosive (HE) charge detonated simultaneously along its axis. The authors have reported a variety of experiments conducted with generator modules 43 cm long and have presented an initial design for hydrodynamic liner experiments. In this paper, they give a synopsis of their first system test, and a status report on the development of a generator module that is 1.4 m long.


SHOCK COMPRESSION OF CONDENSED MATTER - 2011: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter | 2012

A class of ejecta transport test problems

D. Oro; J.E. Hammerberg; William T. Buttler; F. G. Mariam; C. L. Morris; Chris Rousculp; Joseph B. Stone

Recently, Richtmyer–Meshkov Instabilities (RMI) have been proposed for studying the average strength at strain rates up to at least 107/s. RMI experiments involve shocking a metal interface that has initial sinusoidal perturbations. The perturbations invert and grow subsequent to shock and may arrest because of strength effects. In this work we present new RMI experiments and data on a copper target that had five regions with different perturbation amplitudes on the free surface opposite the shock. We estimate the high-rate, low-pressure copper strength by comparing experimental data with Lagrangian numerical simulations. From a detailed computational study we find that mesh convergence must be carefully addressed to accurately compare with experiments, and numerical viscosity has a strong influence on convergence. We also find that modeling the as-built perturbation geometry rather than the nominal makes a significant difference. Because of the confounding effect of tensile damage on total spike growth, which has previously been used as the metric for estimating strength, we instead use a new strength metric: the peak velocity during spike growth. This new metric also allows us to analyze a broader set of experimental results that are sensitive to strength because some larger initial perturbations grow unstably to failure and so do not have a finite total spike growth.

Collaboration


Dive into the D. Oro's collaboration.

Top Co-Authors

Avatar

Christopher L. Rousculp

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

R.E. Reinovsky

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J.R. Griego

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

W.L. Atchison

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

P.J. Turchi

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

W.A. Reass

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

George Rodriguez

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. Stokes

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

C.A. Ekdahl

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

R.D. Fulton

Los Alamos National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge