D. Pate
Brookhaven National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D. Pate.
Proceedings of the 2005 Particle Accelerator Conference | 2005
Vladimir N. Litvinenko; I. Ben-Zvi; D. Beavis; M. Blaskiewicz; J.M. Brennan; A. Burrill; R. Calaga; P. Cameron; Xiangyun Chang; R. Connolly; D. Gassner; H. Hahn; A. Hershcovitch; H.C. Hseuh; P. Johnson; D. Kayran; J. Kewisch; R. Lambiase; G. Mahler; G. McIntyre; W. Meng; T. Nehring; A. Nicoletti; B. Oerter; D. Pate; J. Rank; T. Roser; T. Russo; J. Scaduto; K. Smith
We present the design and parameters of an energy recovery linac (ERL) facility, which is under construction in the Collider-Accelerator Department at BNL. This R&D facility has the goal of demonstrating CW operation of an ERL with an average beam current in the range of 0.1 - 1 ampere and with very high efficiency of energy recovery. The possibility of a future upgrade to a two-pass ERL is also being considered. The heart of the facility is a 5-cell 703.75 MHz super-conducting RF linac with strong Higher Order Mode (HOM) damping. The flexible lattice of the ERL provides a test-bed for exploring issues of transverse and longitudinal instabilities and diagnostics of intense CW electron beams. This ERL is also perfectly suited for a far-IR FEL. We present the status and plans for construction and commissioning of this facility.
Proceedings of the 2005 Particle Accelerator Conference | 2005
I. Ben-Zvi; Vladimir N. Litvinenko; D. Barton; D. Beavis; M. Blaskiewicz; Joseph Brennan; A. Burrill; R. Calaga; P. Cameron; Xiangyun Chang; R. Connolly; Y. Eidelman; A. Fedotov; W. Fischer; D. Gassner; H. Hahn; M. Harrison; A. Hershcovitch; H.-C. Hseuh; A. Jain; P. Johnson; D. Kayran; J. Kewisch; R. Lambiase; W. W. MacKay; G. Mahler; N. Malitsky; G. McIntyre; W. Meng; K.A.M. Mirabella
We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV.
Proceedings of the 2005 Particle Accelerator Conference | 2005
I. Ben-Zvi; D. Barton; D. Beavis; M. Blaskiewicz; J.M. Brennan; A. Burrill; R. Calaga; P. Cameron; Xiangyun Chang; R. Connolly; D. Gassner; J. Grimes; H. Hahn; A. Hershcovitch; H.C. Hseuh; P. Johnson; D. Kayran; J. Kewisch; R. Lambiase; Vladimir N. Litvinenko; G. McIntyre; W. Meng; T. Nehring; A. Nicoletti; D. Pate; B. Oerter; J. Rank; T. Rao; T. Roser; T. Russo
Next generation light-sources, electron coolers, high-power FELs, Compton X-ray sources and many other accelerators were made possible by the emerging technology of high-power, high-brightness electron beams. In order to get the anticipated performance level of ampere-class currents, many technological barriers are yet to be broken. BNL’s Collider-Accelerator Department is pursuing some of these technologies for its electron cooling of RHIC application, as well as a possible future electron-hadron collider. We will describe work on CW, high-current and high-brightness electron beams. This will include a description of a superconducting, laser-photocathode RF gun and an accelerator cavity capable of producing low emittance (about 1 micron rms normalized) one nano-Coulomb bunches at currents of the order of one ampere average.
ieee particle accelerator conference | 2003
T. Srinivasan-Rao; I. Ben-Zvi; A. Burrill; G. Citver; A. Hershcovitch; D. Pate; A. Reuter; J. Scaduto; Q. Zhao; Y. Zhao; Jean Delayen; Peter Kneisel
We present here the design and construction of an all niobium superconducting RF injector to generate high average current, high brightness electron beam. A 1/2 cell superconducting cavity has been designed, built, and tested. A cryostat has been built to cool the cavity to /spl sim/2 K. The RF system can deliver up to 500 W at 1.3 GHz to the cavity. A mode-locked Nd:YVO/sub 4/ laser, operating at 266 nm with 0.15 W average power, phase locked to the RF, will irradiate a laser cleaned Nb surface at the back wall of the cavity. Description of critical components and their status are presented in the paper. Based on DC measurements, QE of up to 10/sup -4/ can be expected from such cavity.
Proceedings of the 2003 Particle Accelerator Conference | 2003
I. Ben-Zvit; Joseph Brennan; A. Burrill; R. Calaga; Xiangyun Chang; G. Citver; H. Hahn; M. Harrison; A. Hershcovitch; A. Jain; C. Montag; A. Fedotov; J. Kewisch; William W. Mackay; G. McIntyre; D. Pate; S. Peggs; J. Rank; T. Roser; J. Scaduto; T. Srinivasan-Rao; Dejan Trbojevic; Dong Wang; A. Zaltsman; Y. Zhao
We introduce the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon bunched-beam ion collider at storage energy using 54 MeV electrons. The electron source will be an RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum bunch frequency is 28.15 MHz, with bunch charge of 10 nC. The R&D program has the following components: The photoinjector, the superconducting linac, start-to-end beam dynamics with magnetized electrons, electron cooling calculations and development of a large superconducting solenoid.
ieee particle accelerator conference | 2007
I. Ben-Zvi; J. Alduino; D. Barton; D. Beavis; M. Blaskiewicz; J.M. Brennan; A. Burrill; R. Calaga; P. Cameron; Xiangyun Chang; A. Drees; A. Fedotov; W. Fischer; G. Ganetis; D. Gassner; J. Grimes; H. Hahn; Lee Hammons; A. Hershcovitch; H.C. Hseuh; D. Kayran; J. Kewisch; R. Lambiase; D. Lederle; Vladimir N. Litvinenko; C. Longo; W. W. MacKay; G. Mahler; G. Mclntyre; W. Meng
The physics interest in a luminosity upgrade of RHIC requires the development of a cooling-frontier facility. Detailed calculations were made of electron cooling of the stored RHIC beams. This has been followed by beam dynamics simulations to establish the feasibility of creating the necessary electron beam. The electron beam accelerator will be a superconducting Energy Recovery Linac (ERL). An intensive experimental R&D program engages the various elements of the accelerator, as described by 24 contributions to the 2007 PAC.
PESP2008 - Workshop on Sources of Polarized Electrons and High Brightness Electron Beams; Jefferson Laboratory, Newport News, VA; 20081001 through 20081003 | 2008
J. Kewisch; I. Ben-Zvi; T. Rao; A. Burrill; D. Pate; Ranjan Grover; Rob Todd; Hans P. Bluem; D. Holmes; Tom Schultheiss
RF electron guns are capable of producing electron bunches with high brightness, which outperform DC electron guns and may even be able to provide electron beams for the ILC without the need for a damping ring. However, all successful existing guns for polarized electrons are DC guns because the environment inside an RF gun is hostile to the GaAs cathode material necessary for polarization. While the typical vacuum pressure in a DC gun is better than 10{sup -11} torr the vacuum in an RF gun is in the order of 10{sup -9} torr. Experiments at BINP Novosibirsk show that this leads to strong ion back-bombardment and generation of dark currents, which destroy the GaAs cathode in a short time. The situation might be much more favorable in a (super-conducting) SRF gun. The cryogenic pumping of the gun cavity walls may make it possible to maintain a vacuum close to 10{sup -12} torr, solving the problem of ion bombardment and dark currents. Of concern would be contamination of the gun cavity by evaporating cathode material. This report describes an experiment that Brookhaven National Laboratory (BNL) in collaboration with Advanced Energy Systems (AES) is conducting to answer these questions.
Vacuum | 1990
Kimo M. Welch; G. McIntyre; J. Tuozzolo; R. Skelton; D. Pate; S.M. Gill
Abstract In excess of a thousand metal vacuum seals are used in the vacuum system of the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory. Numerous elastomer seals are used throughout the AGS to seal large beam component chambers. An accelerator upgrade program is being implemented to reduce the AGS operating pressure by a factor of 100 and improve the reliability of the vacuum system. This paper describes work in progress on metal and elastomer vacuum seals to help meet these two objectives. Tests are reported on the sealing properties of a variety of metal seals used with different sealing surfaces. Results are also given on reversible sorption properties of certain elastomers.
Vacuum | 2001
R. Davis; C De La Parra; H.C. Hseuh; P Mickaliger; D. Pate
The changes in helium leak rates with pressure and temperature from helium-cooled magnet vessels into insulating vacuum were measured. The leak rates increased by three orders of magnitude when the vessels were cooled from ambient temperature to 4.5 K. The changes in leak rates were found to be smaller than those of a viscous flow through a capillary tube.
Proceedings of the 2005 Particle Accelerator Conference | 2005
A. Burrill; I. Ben-Zvi; T. Rao; D. Pate; Zvi Segalov; D. Dowell
The development of a suitable photocathode for use in a high average current photoinjector at temperatures ranging from 273 K down to 2 K is a subject of considerable interest, and active research. The choice of photocathode material is often a trade-off made based on the quantum efficiency of the cathode material, the tolerance to adverse vacuum conditions, and the laser wavelength needed to produce photoelectrons. In this paper an overview of the BNL work to date on CsK2Sb photocathodes on a variety of substrates, irradiated at multiple wavelengths, and at temperatures down to 170 K will be discussed. The application of this photocathode material into a SRF photoinjector will also be discussed.