Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Burrill is active.

Publication


Featured researches published by A. Burrill.


Proceedings of the 2005 Particle Accelerator Conference | 2005

High Current Energy Recovery Linac at BNL

Vladimir N. Litvinenko; I. Ben-Zvi; D. Beavis; M. Blaskiewicz; J.M. Brennan; A. Burrill; R. Calaga; P. Cameron; Xiangyun Chang; R. Connolly; D. Gassner; H. Hahn; A. Hershcovitch; H.C. Hseuh; P. Johnson; D. Kayran; J. Kewisch; R. Lambiase; G. Mahler; G. McIntyre; W. Meng; T. Nehring; A. Nicoletti; B. Oerter; D. Pate; J. Rank; T. Roser; T. Russo; J. Scaduto; K. Smith

We present the design and parameters of an energy recovery linac (ERL) facility, which is under construction in the Collider-Accelerator Department at BNL. This R&D facility has the goal of demonstrating CW operation of an ERL with an average beam current in the range of 0.1 - 1 ampere and with very high efficiency of energy recovery. The possibility of a future upgrade to a two-pass ERL is also being considered. The heart of the facility is a 5-cell 703.75 MHz super-conducting RF linac with strong Higher Order Mode (HOM) damping. The flexible lattice of the ERL provides a test-bed for exploring issues of transverse and longitudinal instabilities and diagnostics of intense CW electron beams. This ERL is also perfectly suited for a far-IR FEL. We present the status and plans for construction and commissioning of this facility.


Proceedings of the 2005 Particle Accelerator Conference | 2005

Electron Cooling of RHIC

I. Ben-Zvi; Vladimir N. Litvinenko; D. Barton; D. Beavis; M. Blaskiewicz; Joseph Brennan; A. Burrill; R. Calaga; P. Cameron; Xiangyun Chang; R. Connolly; Y. Eidelman; A. Fedotov; W. Fischer; D. Gassner; H. Hahn; M. Harrison; A. Hershcovitch; H.-C. Hseuh; A. Jain; P. Johnson; D. Kayran; J. Kewisch; R. Lambiase; W. W. MacKay; G. Mahler; N. Malitsky; G. McIntyre; W. Meng; K.A.M. Mirabella

We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV.


Proceedings of the 2005 Particle Accelerator Conference | 2005

Extremely High Current, High-Brightness Energy Recovery Linac

I. Ben-Zvi; D. Barton; D. Beavis; M. Blaskiewicz; J.M. Brennan; A. Burrill; R. Calaga; P. Cameron; Xiangyun Chang; R. Connolly; D. Gassner; J. Grimes; H. Hahn; A. Hershcovitch; H.C. Hseuh; P. Johnson; D. Kayran; J. Kewisch; R. Lambiase; Vladimir N. Litvinenko; G. McIntyre; W. Meng; T. Nehring; A. Nicoletti; D. Pate; B. Oerter; J. Rank; T. Rao; T. Roser; T. Russo

Next generation light-sources, electron coolers, high-power FELs, Compton X-ray sources and many other accelerators were made possible by the emerging technology of high-power, high-brightness electron beams. In order to get the anticipated performance level of ampere-class currents, many technological barriers are yet to be broken. BNL’s Collider-Accelerator Department is pursuing some of these technologies for its electron cooling of RHIC application, as well as a possible future electron-hadron collider. We will describe work on CW, high-current and high-brightness electron beams. This will include a description of a superconducting, laser-photocathode RF gun and an accelerator cavity capable of producing low emittance (about 1 micron rms normalized) one nano-Coulomb bunches at currents of the order of one ampere average.


ieee particle accelerator conference | 2003

Design, construction and status of all niobium superconducting photoinjector at BNL

T. Srinivasan-Rao; I. Ben-Zvi; A. Burrill; G. Citver; A. Hershcovitch; D. Pate; A. Reuter; J. Scaduto; Q. Zhao; Y. Zhao; Jean Delayen; Peter Kneisel

We present here the design and construction of an all niobium superconducting RF injector to generate high average current, high brightness electron beam. A 1/2 cell superconducting cavity has been designed, built, and tested. A cryostat has been built to cool the cavity to /spl sim/2 K. The RF system can deliver up to 500 W at 1.3 GHz to the cavity. A mode-locked Nd:YVO/sub 4/ laser, operating at 266 nm with 0.15 W average power, phase locked to the RF, will irradiate a laser cleaned Nb surface at the back wall of the cavity. Description of critical components and their status are presented in the paper. Based on DC measurements, QE of up to 10/sup -4/ can be expected from such cavity.


Archive | 2006

Nb-Pb Superconducting RF Gun

Jacek Sekutowicz; J. Iversen; G. Kreps; W. Moller; W. Singer; X. Singer; Desy; I. Ben-Zvi; A. Burrill; John Smedley; T. Rao; M. Ferrario; Frascati; Peter Kneisel; Jefferson Lab; J. Langner; P. Strzyzewski; R. Lefferts; A. Lipski; Karol Szałowski; U Lodz; K. Ko; Liling Xiao

We report on the status of an electron RF-gun made of two superconductors: niobium and lead. The presented design combines the advantages of the RF performance of bulk niobium superconducting cavities and the reasonably high quantum efficiency of lead, as compared to other superconducting metals. The concept, mentioned in a previous paper, follows the attractive approach of all niobium superconducting RF-gun as it has been proposed by the BNL group. Measured values of quantum efficiency for lead at various photon energies, analysis of recombination time of photon-broken Cooper pairs for lead and niobium, and preliminary cold test results are discussed in this paper.


Proceedings of the 2003 Particle Accelerator Conference | 2003

R&D towards cooling of the RHIC collider

I. Ben-Zvit; Joseph Brennan; A. Burrill; R. Calaga; Xiangyun Chang; G. Citver; H. Hahn; M. Harrison; A. Hershcovitch; A. Jain; C. Montag; A. Fedotov; J. Kewisch; William W. Mackay; G. McIntyre; D. Pate; S. Peggs; J. Rank; T. Roser; J. Scaduto; T. Srinivasan-Rao; Dejan Trbojevic; Dong Wang; A. Zaltsman; Y. Zhao

We introduce the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon bunched-beam ion collider at storage energy using 54 MeV electrons. The electron source will be an RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum bunch frequency is 28.15 MHz, with bunch charge of 10 nC. The R&D program has the following components: The photoinjector, the superconducting linac, start-to-end beam dynamics with magnetized electrons, electron cooling calculations and development of a large superconducting solenoid.


ieee particle accelerator conference | 2007

Recent progress on the diamond amplified photo-cathode experiment

Xiangyun Chang; I. Ben-Zvi; A. Burrill; J. Grimes; T. Rao; Z. Segalov; John Smedley; Qiong Wu

We report recent progress on the diamond amplified photo-cathode (DAP). The use of a pulsed electron gun provides detailed information about the DAP physics. The secondary electron gain has been measured under various electric fields. We have achieved gains of a few hundred in the transmission mode and observed evidence of emission of electrons from the surface. A model based on recombination of electrons and holes during generation well describes the field dependence of the gain. The emittance measurement system for the DAP has been designed, constructed and is ready for use. The capsule design of the DAP is also being studied in parallel.


ieee particle accelerator conference | 2007

Status of the R&D towards electron cooling of RHIC

I. Ben-Zvi; J. Alduino; D. Barton; D. Beavis; M. Blaskiewicz; J.M. Brennan; A. Burrill; R. Calaga; P. Cameron; Xiangyun Chang; A. Drees; A. Fedotov; W. Fischer; G. Ganetis; D. Gassner; J. Grimes; H. Hahn; Lee Hammons; A. Hershcovitch; H.C. Hseuh; D. Kayran; J. Kewisch; R. Lambiase; D. Lederle; Vladimir N. Litvinenko; C. Longo; W. W. MacKay; G. Mahler; G. Mclntyre; W. Meng

The physics interest in a luminosity upgrade of RHIC requires the development of a cooling-frontier facility. Detailed calculations were made of electron cooling of the stored RHIC beams. This has been followed by beam dynamics simulations to establish the feasibility of creating the necessary electron beam. The electron beam accelerator will be a superconducting Energy Recovery Linac (ERL). An intensive experimental R&D program engages the various elements of the accelerator, as described by 24 contributions to the 2007 PAC.


Proceedings of the 2005 Particle Accelerator Conference | 2005

Study of Secondary Emission Enhanced Photoinjector

Xiangyun Chang; I. Ben-Zvi; A. Burrill; P. D. Johnson; J. Kewisch; T. Rao; Zvi Segalov; Y. Zhao

The secondary emission enhanced photoinjector (SEEP) is a very promising new approach to the generation of high-current, high-brightness electron beams. Primary electrons with a few thousand electron-volts of energy strike a specially prepared diamond window. The large Secondary Electron Yield (SEY) provides a multiplication of the number of electrons by about two orders of magnitude. The secondary electrons drift through the diamond under an electric field and emerge into the accelerating proper of the “gun” through a Negative Electron Affinity (NEA) surface of the diamond (Hydrogen terminated). We present the calculation of heating power sources and the temperature distribution in detail. Some properties of the secondary electron beam related to beam dynamics are also reported. The results demonstrate the feasibility of this kind of cathode.


Proceedings of the 2005 Particle Accelerator Conference | 2005

Measurement of the Secondary Emission Yield of a Thin Diamond Window in Transmission Mode

Xiangyun Chang; Ilan Ben-Zvi; A. Burrill; Steven L. Hulbert; P. D. Johnson; Jorg Kewisch; T. Rao; John Smedley; Zvi Segalov; Y. Zhao

The secondary emission enhanced photoinjector (SEEP) is a promising new approach to the generation of high-current, high-brightness electron beams. A low current primary electron beam with energy of a few thousand electron-volts strikes a specially prepared diamond window which emits secondary electrons with a current two orders of magnitude higher. The secondary electrons are created at the back side of the diamond and drift through the window under the influence of a strong electrical field. A hydrogen termination at the exit surface of the window creates a negative electron affinity (NEA) which allows the electrons to leave the diamond. An experiment was performed to measure the secondary electron yield and other properties. The results are discussed in this paper..

Collaboration


Dive into the A. Burrill's collaboration.

Top Co-Authors

Avatar

I. Ben-Zvi

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Xiangyun Chang

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

T. Rao

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. Kewisch

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. Kayran

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

H. Hahn

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. Pate

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

G. McIntyre

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

A. Hershcovitch

Brookhaven National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge