Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. Pavlíková is active.

Publication


Featured researches published by D. Pavlíková.


Plant and Soil | 2005

Arbuscular mycorrhiza decreases cadmium phytoextraction by transgenic tobacco with inserted metallothionein

Martina Janoušková; D. Pavlíková; Tomas Macek; Miroslav Vosátka

The effect of arbuscular mycorrhiza (AM) on the phytoextraction efficiency of transgenic tobacco with increased ability to tolerate and accumulate cadmium (Cd) was tested in a pot experiment. The tobacco plants bearing the yeast metallothionein CUP1 combined with a polyhistidine cluster were compared to non-transgenic tobacco of the same variety at four Cd concentrations in soil, non-inoculated or inoculated with two isolates of the AM fungus Glomus intraradices. Mycorrhizal inoculation improved the growth of both the transgenic and non-transgenic tobacco and decreased Cd concentrations in shoots and root to shoot translocation. Differences were found between the two AM fungal isolates: one isolate supported more efficient phosphorus uptake and plant growth in the soil without Cd addition, while the other isolate alleviated the inhibitory effect of cadmium on plant growth. The resulting effect of inoculation on Cd accumulation was dependent on Cd level in soil and differed between the more Cd tolerant transgenic plants and the less tolerant non-transgenic plants. Mycorrhiza mostly decreased the phytoextraction efficiency of transgenic plants while increased that of non-transgenic plants at Cd levels in soil inhibitory to tobacco growth. Mechanisms of the observed effects of inoculation on growth and Cd uptake are discussed as well as the possible implications of the results for the exploitation of AM in phytoextraction of heavy metals from contaminated soils.


Central European Journal of Biology | 2007

Variation in the uptake of Arsenic, Cadmium, Lead, and Zinc by different species of willows Salix spp. grown in contaminated soils

Pavel Tlustoš; J. Száková; Markéta Vysloužilová; D. Pavlíková; Jan Weger; Hana Javorská

The experiment assessed the variability of in seven clones of willow plants of high biomass production (Salix smithiana S-218, Salix smithiana S-150, Salix viminalis S-519, Salix alba S-464, Salix ’Pyramidalis’ S-141, Salix dasyclados S-406, Salix rubens S-391). They were planted in a pots for three vegetation periods in three soils differing in the total content of risk elements. Comparing the calculated relative decrease of total metal contents in soils, the phytoextraction potential of willows was obtained for cadmium (Cd) and zinc (Zn), moderately contaminated Cambisol and uncontaminated Chernozem, where aboveground biomass removed about 30% Cd and 5% Zn of the total element content, respectively. The clones showed variability in removing Cd and Zn, depending on soil type and contamination level: S. smithiana (S-150) and S. rubens (S-391) demonstrated the highest phytoextraction effect for Cd and Zn. For lead (Pb) and arsenic (As), the ability to accumulate the aboveground biomass of willows was found to be negligible in both soils. The results confirmed that willow plants show promising results for several elements, mainly for mobile ones like cadmium and zinc in moderate levels of contamination. The differences in accumulation among the clones seemed to be affected more by the properties of clones, not by the soil element concentrations or soil properties. However, confirmation and verification of the results in field conditions as well as more detailed investigation of the mechanisms of cadmium uptake in rhizosphere of willow plants will be determined by further research.


Ecotoxicology and Environmental Safety | 2010

The effect of arsenic contamination on amino acids metabolism in Spinacia oleracea L.

Milan Pavlík; D. Pavlíková; L. Staszková; M. Neuberg; Regina Kaliszová; Jiřina Száková; Pavel Tlustoš

Changes of amino acid concentrations (proline, glutamate, asparagine, aspartate, alanine) and glutamate kinase activity (GKA) in plants under arsenic chronic stress reported here reveal their role in plant arsenic stress adaptation. Results of the pot experiment confirmed the toxic effect of arsenic at tested levels (As1=25 mg As kg(-1) soil, As2=50 mg As kg(-1) soil, As3=75 mg As kg(-1) soil) for spinach. Growing available arsenic contents in soil were associated with the strong inhibition of above-ground biomass and with the enhancement of As plant content. The changes of glutamate, asparagine, aspartate and proline levels in the plants showed strong linear dependences on arsenic concentration in plants (R2=0.60-0.90). Compared to the untreated control, concentrations of free proline and aspartate of As3 treatment were enhanced up to 381% and 162%, respectively. The significant changes of glutamate were observed on As2 and As3 treatments (increased level up to 188, i.e. 617%). Arsenic in plants was shown to be an inhibitor of glutamase kinase activity (R2=0.91). Inhibition of GKA resulted in an increase in the content of glutamate that is used in synthesis of phytochelatins in plant cells. Concentration of alanine did not have a confirmed linear dependence on arsenic concentration in plant (R2=0.05). The changes of its concentrations could be affected by changes of pH in plant cell or induction of alanine aminotransferase by hypoxia.


Ecotoxicology and Environmental Safety | 2012

Trace elements present in airborne particulate matter—Stressors of plant metabolism

Milan Pavlík; D. Pavlíková; Veronika Zemanová; František Hnilička; Veronika Urbanová; Jiřina Száková

Changes of amino acid concentrations (glutamic acid, glutamine, asparagine, aspartate, proline, tryptophan, alanine, glycine, valine and serine), gas-exchange parameters (net photosynthetic rate, transpiration rate, stomatal conductance and intercellular CO(2) concentration) and nitrate levels in Lactuca serriola L. under airborne particulate matter (PM) contamination reported here reveal their role in plant chronic stress adaptation. Results of the pot experiment confirmed the toxic effect of trace elements present in PM for lettuce. PM applied to soil or on the lettuce leaves were associated with the strong inhibition of above-ground biomass and with the enhancement of plant trace element contents. The significant changes of amino acid levels and leaf gas-exchange parameters of the plants showed strong linear dependences on PM contamination (R(2)=0.60-0.99). PM application on leaves intensified toxic effect of trace elements (As, Pb, Cr and Cd) originating from PM by shading of the leaf surface. The plant accumulation of nitrate nitrogen after PM contamination confirmed to block nitrate assimilation.


Ecotoxicology and Environmental Safety | 2014

The long-term effect of zinc soil contamination on selected free amino acids playing an important role in plant adaptation to stress and senescence

D. Pavlíková; Veronika Zemanová; Dagmar Procházková; Milan Pavlík; Jiřina Száková; Naďa Wilhelmová

Increased endogenous plant cytokinin (CK) content through transformation with an isopentyl transferase (ipt) gene has been associated with improved plant stress tolerance. The objective of this study is to determine amino acid changes associated with elevated CK production in ipt transgenic tobacco (Nicotiana tabacum L., cv. Wisconsin 38). Nontransformed (WT) and transformed tobacco plants with ipt gene controlled by senescence-activated promoter (SAG) were exposed to zinc soil contamination (tested levels Zn1=250, Zn2=500, Zn3=750 mg kg(-1) soil). The Zn effect on plant stress metabolism resulted in changes in levels of selected free amino acids playing an important role in adaptation to stress and plant senescence (alanine, leucine, proline, methionine and γ-aminobutyrate) and differed for transformed and nontransformed tobacco plants. Analyses of amino acids confirmed that SAG tobacco plants had improved zinc tolerance compared with the WT plants. The enhanced Zn tolerance of SAG plants was associated with the maintenance of accumulation of proline, methionine and γ-aminobutyrate. The concentrations of leucine and alanine did not show significant differences between plant lines.


Journal of Plant Physiology | 2014

Nitrogen metabolism and gas exchange parameters associated with zinc stress in tobacco expressing an ipt gene for cytokinin synthesis

D. Pavlíková; Milan Pavlík; Dagmar Procházková; Veronika Zemanová; František Hnilička; Naďa Wilhelmová

Increased endogenous plant cytokinin (CK) content through transformation with an isopentyl transferase (ipt) gene has been associated with improved plant stress tolerance. The impact of zinc (tested levels Zn1=250, Zn2=500, Zn3=750mgkg(-1)soil) on gas exchange parameters (net photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO2 concentration) and nitrogen utilization by plants resulted in changes of free amino acid concentrations (glutamic acid, glutamine, asparagine, aspartate, glycine, serine, cystein) and differed for transformed and non-transformed tobacco plants. For pot experiments, tobacco plants (Nicotiana tabacum L., cv. Wisconsin 38) transformed with a construct consisting of SAG12 promoter fused with the ipt gene for cytokinin synthesis (SAG plants) and its wild type (WT plants as a control) were used. Physiological analyses confirmed that SAG plants had improved zinc tolerance compared with the WT plants. The enhanced Zn tolerance of SAG plants was associated with the maintenance of accumulation of amino acids and with lower declines of photosynthetic and transpiration rates. In comparison to WT plants, SAG plants exposed to the highest Zn concentration accumulated lower concentrations of asparagine, which is a major metabolic product during senescence.


International Journal of Phytoremediation | 2007

Monitoring Native Vegetation on a Dumpsite of PCB-Contaminated Soil

D. Pavlíková; Tomas Macek; Martina Mackova; Milan Pavlík

Composition of native vegetation on a polychlorinated biphenyls (PCB)-contaminated soil dumpsite at Lhenice, South Bohemia (Czech Republic), was determined and species variability in the accumulation of PCBs in plant biomass was investigated. Soil stripping contaminated by PCBs originated at a factory producing electrical transformers that mostly used the commercial PCB mixture Delor 103 and 106. The PCB content of soil in the most contaminated part of the dumpsite reached 153 mg kg−1 dry soil. Low diversity of plant species was found on the dumpsite. Results showed three grass species, Festuca arundinacea Schreb., Phalaroides arundinacea (L.) Rauschert., and Calamagrostis epigeios (L.) Roth., to be the major components of the vegetation and confirmed their high tolerance toward PCB contamination. The highest content of PCB in plant biomass—813.2 μg kg−1 dry biomass—was determined in Festuca aboveground biomass. For phytoextraction purposes especially, Festuca can be recommended due to its high biomass yield, but its bioconcentration factor was very low (0.006). Tripleurospermum maritimum (L.) Sch. Bip. and Cirsium arvense (L.) Scop. grew mainly at the margins of the most contaminated part of the dumpsite. The PCB content determined in their aboveground biomass—278.7 and 289.5 μg kg−1 dry biomass, respectively—was nonsignificantly lower compared to grass species Phalaroides and Calamagrostis. Salix (Salix viminalis L. and Salix caprea L.) was monitored among plant species composition at this site as a representative of woody species.


Photosynthetica | 2013

Effects of exogenous nitric oxide on photosynthesis

Dagmar Procházková; D. Haisel; N. Wilhelmová; D. Pavlíková; Jiřina Száková

Nitric oxide (NO) is an important signalling molecule with diverse physiological functions in plants. In plant cell, it is synthesised in several metabolic ways either enzymatically or nonenzymatically. Due to its high reactivity, it could be also cytotoxic in dependence on concentration. Such effects could be also mediated by NO-derived compounds. However, the role of NO in photosynthetic apparatus arrangement and in photosynthetic performance is poorly understood as indicated by a number of studies in this field with often conflicting results. This review brings a short survey of the role of exogenous NO in photosynthesis under physiological and stressful conditions, particularly of its effect on parameters of chlorophyll fluorescence.


Central European Journal of Chemistry | 2005

A comparison of sequential extraction procedures for fractionation of arsenic, cadmium, lead, and zinc in soil

Pavel Tlustoš; Jiřina Száková; Alena Stárková; D. Pavlíková

Twelve soil samples differing in physicochemical properties and total element contents were extracted by three sequential extraction procedures to determine As, Cd, Pb, and Zn bound to individual soil fractions and are defined by individual operational procedures. In the case of arsenic, two additional sequential extraction schemes were designed entirely for fractionation of soil containing arsenic were tested. The results confirmed that determination of element proportions bound to individual soil fractions is strongly dependent on the extracting agent and/or procedure applied within individual extracting schemes. As expected, absolute values of the elements released among the individual extracting procedures are weakly comparable. More reliable results were determined for the more mobile soil elements i.e. cadmium and zinc, in the fractions characterizing the most mobile proportions of investigated elements where significant correlations with basic soil characteristics were observed. In contrast, ambiguous results were observed for As and Pb, for both the individual extraction procedures and the effect of the soil characteristics. Regardless of the studied element, the poorest results were determined for reducible and oxidizable soil fractions. The application of at least two independent procedures or modification of the extraction scheme according to element investigated and/or particular soil characteristics can also be helpful in definition of element pattern in soils in further research.


Archive | 2009

Advances in Phytoremediation and Rhizoremediation

Tomas Macek; Ondrej Uhlik; Katerina Jecna; Martina Novakova; Petra Lovecka; Jan Rezek; Vlasta Dudkova; Petr Stursa; Blanka Vrchotova; D. Pavlíková; Katerina Demnerova; Martina Mackova

Phytoremediation, with the associated role of rhizospheric microorganisms, is an important tool in bioremediation processes. Plants have an inherent ability to detoxify some xenobiotics and remove compounds from soil by direct uptake of the contaminants followed by subsequent transformation, transport and product accumulation, using enzymes similar to detoxification enzymes in mammals. Being autotrophic organisms, plants do not utilize organic compounds for their energy and carbon metabolism. As a consequence, they usually lack the catabolic enzymes necessary to achieve full mineralization of organic molecules. Plants can be used for removal of both inorganic and organic xenobiotics present in the soil, water and air. The chapter summarizes the classical approaches and possibilities for increasing effectiveness of phyto-and rhizo-remediation using genetically modified organisms. Perspectives are presented related to the use of molecular methods, including metagenomics and stable isotope probing, for obtaining deeper knowledge with a view to influencing the composition of consortia of organisms living in the contaminated environment.

Collaboration


Dive into the D. Pavlíková's collaboration.

Top Co-Authors

Avatar

Pavel Tlustoš

Czech University of Life Sciences Prague

View shared research outputs
Top Co-Authors

Avatar

Jiřina Száková

Czech University of Life Sciences Prague

View shared research outputs
Top Co-Authors

Avatar

Milan Pavlík

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

J. Balík

Czech University of Life Sciences Prague

View shared research outputs
Top Co-Authors

Avatar

Veronika Zemanová

Czech University of Life Sciences Prague

View shared research outputs
Top Co-Authors

Avatar

J. Száková

University of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Dagmar Procházková

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Tomas Macek

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

D. Haisel

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

L. Staszková

Czech University of Life Sciences Prague

View shared research outputs
Researchain Logo
Decentralizing Knowledge